python使用pipeline批量读写redis

技术 专栏收录该内容
18 篇文章 0 订阅

python使用pipeline批量读写redis

用了很久的redis了。随着业务的要求越来越高。对redis的读写速度要求也越来越高。正好最近有个需求(需要在秒级取值1000+的数据),如果对于传统的单词取值,循环取值,消耗实在是大,有小伙伴可能考虑到多线程,但这并不是最好的解决方案,这里考虑到了redis特有的功能pipeline管道功能。下面就更大家演示一下pipeline在python环境下的使用情况。

1、插入数据

>>> import redis

>>> conn = redis.Redis(host='192.168.8.176',port=6379)

>>> pipe = conn.pipeline()

>>> pipe.hset("hash_key","leizhu900516",8)
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>

>>> pipe.hset("hash_key","chenhuachao",9)
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>

>>> pipe.hset("hash_key","wanger",10)
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>

>>> pipe.execute()
[1L, 1L, 1L]
>>> 

 

2、批量读取数据

>>> pipe.hget("hash_key","leizhu900516")
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>

>>> pipe.hget("hash_key","chenhuachao")
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>

>>> pipe.hget("hash_key","wanger")
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>

>>> result = pipe.execute()

>>> print result
['8', '9', '10']   #有序的列表
>>>

 

总结:redis的pipeline就是这么简单,实际生产环境,根据需要去编写相应的代码。思路同理,如:

redis_db = redis.Redis(host='127.0.0.1',port=6379)
data = ['zhangsan', 'lisi', 'wangwu']

with redis_db.pipeline(transaction=False) as pipe:
    for i in data:
        pipe.zscore(self.key, i)

    result = pipe.execute()

print result
# [100, 80, 78]

线上的redis一般都是集群模式,集群模式下使用pipeline的时候,在创建pipeline的对象时,需要指定

pipe =conn.pipeline(transaction=False)

经过线上实测,利用pipeline取值3500条数据,大约需要900ms,如果配合线程or协程来使用,每秒返回1W数据是没有问题的,基本能满足大部分业务。

 

转载地址:https://blog.csdn.net/pushiqiang/article/details/80444633

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 扫一扫,分享海报

©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值