Python 轻量级序列化和反序列化包 marshmallow 详细使用指南2

Marshmallow是一个Python库,用于在Python对象和JSON数据之间进行序列化和反序列化。它还提供了数据验证功能。文章详细介绍了如何定义Schema,进行序列化和反序列化操作,包括过滤输出、处理多个对象集合、自定义验证规则以及处理未知字段。此外,还讨论了如何处理只读和只写字段以及设置默认值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

marshmallow官址

定义一个测试类

import datetime as dt

class User:
    def __init__(self, name, email):
        self.name = name
        self.email = email
        self.created_time = dt.datetime.now()

1、Scheme

要对一个类或者一个json数据实现相互转换(即序列化和反序列化), 需要一个中间载体, 这个载体就是Schema,另外Schema还可以用来做数据验证。

# 这是一个简单的Scheme
from marshmallow import Schema, fields


class UserSchema(Schema):
    name = fields.String()
    email = fields.Email()
    created_time = fields.DateTime()

2、Serializing(序列化)

使用scheme的dump()方法来序列化对象,返回的是dict格式的数据
另外schema的dumps()方法序列化对象,返回的是json编码格式的字符串。

user = User("lhh","2432783449@qq.com")
schema = UserSchema()
res = schema.dump(user)
print(res)
# {'email': '2432783449@qq.com', 'created_time': '2021-05-28 20:43:08.946112', 'name': 'lhh'}  dict

res2 = schema.dumps(user)
print(res2)
# {"name": "lhh", "email": "2432783449@qq.com", "created_time": "2021-05-28 20:45:17.418739"}  json

3、过滤输出

当不需要输出所有的字段时,可以在实例化Scheme时,声明only参数,来指定输出:

summary_schema = UserSchema(only={"name","email"})
res = summary_schema.dump(user)
print(res)

4、Deserializing(反序列化)

schema的load()方法与dump()方法相反,用于dict类型的反序列化。他将输入的字典格式数据转换成应用层数据结构。他也能起到验证输入的字典格式数据的作用。
同样,也有对json解码的loads()方法。用于string类型的反序列化。
默认情况下,load()方法返回一个字典,当输入的数据的值不匹配字段类型时,抛出 ValidationError 异常。

user_data = {
    "name": "lhh",
    "email": "2432783449@qq.com",
    "created_time": "2021-05-28 20:45:17.418739"
}
schema = UserSchema()
res = schema.load(user_data)
print(res)
# {'created_time': '2021-05-28 20:45:17.418739', 'email': '2432783449@qq.com', 'name': 'lhh'}

对反序列化而言, 将传入的dict变成object更加有意义. 在Marshmallow中, dict -> object的方法需要自己实现, 然后在该方法前面加上一个装饰器post_load即可

class UserSchema(Schema):
    name = fields.String()
    email = fields.Email()
    created_time = fields.DateTime()

    @post_load
    def make_user(self, data):
        return User(**data)

这样每次调用load()方法时, 会按照make_user的逻辑, 返回一个User类对象。

user_data = {
    "name": "lhh",
    "email": "2432783449@qq.com"
}

schema = UserSchema()
res = schema.load(user_data)
print(res)
# <__main__.User object at 0x0000027BE9678128>
user = res
print("name: {}    email: {}".format(user.name, user.email))
# name: lhh    email: 2432783449@qq.com

5、处理多个对象的集合

多个对象的集合如果是可迭代的,那么也可以直接对这个集合进行序列化或者反序列化。在实例化Scheme类时设置参数many=True

也可以不在实例化类的时候设置,而在调用dump()方法的时候传入这个参数。

user1 = User(name="lhh1", email="2432783449@qq.com")
user2 = User(name="lhh2", email="2432783449@qq.com")
users = [user1, user2]

# 第一种方法
schema = UserSchema(many=True)
res = schema.dump(users)
print(res)

# 第二种方法
schema = UserSchema()
res = schema.dump(users,many=True)
print(res)

6、Validation(验证)

当不合法的数据通过Schema.load()或者Schema.loads()时,会抛出一个 ValidationError 异常。ValidationError.messages属性有验证错误信息,验证通过的数据在 ValidationError.valid_data 属性中
我们捕获这个异常,然后做异常处理。首先需要导入ValidationError这个异常

from marshmallow import Schema,fields,ValidationError


class UserSchema(Schema):
    name = fields.String()
    email = fields.Email()
    created_time = fields.DateTime()

try:
    res = UserSchema().load({"name":"lhh","email":"lhh"})

except ValidationError as e:
    print(f"错误信息:{e.messages}  合法数据:{e.valid_data}")

'''
    当验证一个数据集合的时候,返回的错误信息会以 错误序号-错误信息 的键值对形式保存在errors中
'''
user_data = [
    {'email': '2432783449@qq.com', 'name': 'lhh'},
    {'email': 'invalid', 'name': 'Invalid'},
    {'name': 'wcy'},
    {'email': '2432783449@qq.com'},
]


try:
    schema = UserSchema(many=True)
    res = schema.load(user_data)
    print(res)
except ValidationError as e:
    print("错误信息:{}   合法数据:{}".format(e.messages, e.valid_data))

可以看到上面,有错误信息,但是对于没有传入的属性则没有检查,也就是说没有规定属性必须传入。

在Schema里规定不可缺省字段:设置参数required=True

可以看到上面,有错误信息,但是对于没有传入的属性则没有检查,也就是说没有规定属性必须传入。
在Schema里规定不可缺省字段:设置参数required=True

6.1 自定义验证信息

在编写Schema类的时候,可以向内建的fields中设置validate参数的值来定制验证的逻辑, validate的值可以是函数, 匿名函数lambda, 或者是定义了__call__的对象。

from marshmallow import Schema,fields,ValidationError


class UserSchema(Schema):
    name = fields.String(required=True, validate=lambda s:len(s) < 6)
    email = fields.Email()
    created_time = fields.DateTime()
        
user_data = {"name":"InvalidName","email":"2432783449@qq.com"}
try:
    res = UserSchema().load(user_data)
except ValidationError as e:
    print(e.messages)

在验证函数中自定义异常信息:

#encoding=utf-8
from marshmallow import Schema,fields,ValidationError

def validate_name(name):
    if len(name) <=2:
        raise ValidationError("name长度必须大于2位")
    if len(name) >= 6:
        raise ValidationError("name长度不能大于6位")




class UserSchema(Schema):
    name = fields.String(required=True, validate=validate_name)
    email = fields.Email()
    created_time = fields.DateTime()

user_data = {"name":"InvalidName","email":"2432783449@qq.com"}
try:
    res = UserSchema().load(user_data)
except ValidationError as e:
    print(e.messages)

注意:只会在反序列化的时候发生验证!序列化的时候不会验证!

6.2 将验证函数写在Schema中变成验证方法

在Schema中,使用validates装饰器就可以注册验证方法。

#encoding=utf-8
from marshmallow import Schema, fields, ValidationError, validates


class UserSchema(Schema):
    name = fields.String(required=True)
    email = fields.Email()
    created_time = fields.DateTime()

    @validates("name")
    def validate_name(self, value):
        if len(value) <= 2:
            raise ValidationError("name长度必须大于2位")
        if len(value) >= 6:
            raise ValidationError("name长度不能大于6位")


user_data = {"name":"InvalidName","email":"2432783449@qq.com"}
try:
    res = UserSchema().load(user_data)
except ValidationError as e:
    print(e.messages)

6.3 Required Fields(必填选项)

自定义required异常信息:

首先我们可以自定义在requird=True时缺失字段时抛出的异常信息:设置参数error_messages的值

#encoding=utf-8
from marshmallow import Schema, fields, ValidationError, validates


class UserSchema(Schema):
    name = fields.String(required=True, error_messages={"required":"name字段必须的"})
    email = fields.Email()
    created_time = fields.DateTime()

    @validates("name")
    def validate_name(self, value):
        if len(value) <= 2:
            raise ValidationError("name长度必须大于2位")
        if len(value) >= 6:
            raise ValidationError("name长度不能大于6位")


user_data = {"email":"2432783449@qq.com"}
try:
    res = UserSchema().load(user_data)
except ValidationError as e:
    print(e.messages)

忽略部分字段:

使用required之后我们还是可以在传入数据的时候忽略这个必填字段。

#encoding=utf-8
from marshmallow import Schema, fields, ValidationError, validates


class UserSchema(Schema):
    name = fields.String(required=True)
    age = fields.Integer(required=True)

# 方法一:在load()方法设置partial参数的值(元组),表时忽略那些字段。
schema = UserSchema()
res = schema.load({"age": 42}, partial=("name",))
print(res)
# {'age': 42}

# 方法二:直接设置partial=True
schema = UserSchema()
res = schema.load({"age": 42}, partial=True)
print(res)
# {'age': 42}

看起来两种方法是一样的,但是方法一和方法二有区别:方法一只忽略传入partial的字段,方法二会忽略除前面传入的数据里已有的字段之外的所有字段

6.4 对未知字段的处理

默认情况下,如果传入了未知的字段(Schema里没有的字段),执行load()方法会抛出一个 ValidationError 异常。这种行为可以通过更改 unknown 选项来修改。

unknown 有三个值:

  • EXCLUDE: exclude unknown fields(直接扔掉未知字段)
  • INCLUDE: accept and include the unknown fields(接受未知字段)
  • RAISE: raise a ValidationError if there are any unknown fields(抛出异常)

我们可以看到,默认的行为就是RAISE。有两种方法去更改:

方法一:在编写Schema类的时候在class Meta里修改

from marshmallow import EXCLUDE,Schema,fields

class UserSchema(Schema):
    name = fields.String(required=True,error_messages={"required": "name字段必须填写"})
    email = fields.Email()
    created_time = fields.DateTime()


    class Meta:
        unknown  = EXCLUDE
        

方法二:在实例化Schema类的时候设置参数unknown的值

class UserSchema(Schema):
    name = fields.Str(required=True, error_messages={"required": "name字段必须填写"})
    email = fields.Email()
    created_time = fields.DateTime()

shema = UserSchema(unknown=EXCLUDE)

7、Schema.validate(校验数据)

如果只是想用Schema去验证数据, 而不进行反序列化生成对象, 可以使用Schema.validate()
可以看到, 通过schema.validate()会自动对数据进行校验, 如果有错误, 则会返回错误信息的dict,没有错误则返回空的dict,通过返回的数据, 我们就可以确认验证是否通过.

#encoding=utf-8
from marshmallow import Schema,fields,ValidationError

class UserSchema(Schema):
    name = fields.Str(required=True, error_messages={"required": "name字段必须填写"})
    email = fields.Email()
    created_time = fields.DateTime()

user = {"name":"lhh","email":"2432783449"}
schema = UserSchema()
res = schema.validate(user)
print(res)  # {'email': ['Not a valid email address.']}

user = {"name":"lhh","email":"2432783449@qq.com"}
schema = UserSchema()
res = schema.validate(user)
print(res)  # {}

8. Specifying Serialization/Deserialization Keys(指定序列化/反序列化键)

data_key同时满足序列化与反序列化的方法

from marshmallow import fields,Schema,ValidationError
import datetime as dt


class User:
    def __init__(self, name, email):
        self.name = name
        self.email = email
        self.created_time = dt.datetime.now()


class UserSchema(Schema):
    name = fields.Str(data_key="name_123")
    email = fields.Email(data_key="email_123")
    created_time = fields.DateTime()

user = User("lhh",email="2432783449@qq.com")
user = {"name": "lhh", "email": "2432783449@qq.com"}
schema = UserSchema()
res = schema.dump(user)
print(res)
# {'email_123': '2432783449@qq.com', 'name_123': 'lhh'}

user = {"name_123": "lhh", "email_123": "2432783449@qq.com"}
schema = UserSchema()
res = schema.load(user)
print(res)
# {'email': '2432783449@qq.com', 'name': 'lhh'}

9. 重构:创建隐式字段

当Schema具有许多属性时,为每个属性指定字段类型可能会重复,特别是当许多属性已经是本地python的数据类型时。class Meta允许指定要序列化的属性,marshmallow将根据属性的类型选择适当的字段类型。

# 重构Schema
class UserSchema(Schema):
    uppername = fields.Function(lambda obj: obj.name.upper())

    class Meta:
        fields = ("name", "email", "created_at", "uppername")

以上代码中, name将自动被格式化为String类型,created_at将被格式化为DateTime类型。

如果您希望指定除了显式声明的字段之外还包括哪些字段名,则可以使用附加选项。如下:

class UserSchema(Schema):
    uppername = fields.Function(lambda obj: obj.name.upper())

    class Meta:
        # No need to include 'uppername'
        additional = ("name", "email", "created_at")

10. 排序

对于某些用例,维护序列化输出的字段顺序可能很有用。要启用排序,请将ordered选项设置为true。这将指示marshmallow将数据序列化到collections.OrderedDict

from collections import OrderedDict
import datetime as dt
from marshmallow import fields,ValidationError,Schema

class User:
    def __init__(self, name, email):
        self.name = name
        self.email = email
        self.created_time = dt.datetime.now()

class UserSchema(Schema):
    uppername = fields.Function(lambda obj: obj.name.upper())

    class Meta:
        fields = ("name", "email", "created_time", "uppername")
        ordered = True


user = User("lhh", "2432783449@qq.com")
schema = UserSchema()
res = schema.dump(user)
print(isinstance(res,OrderedDict))  # 判断变量类型
# True
print(res)
# OrderedDict([('name', 'lhh'), ('email', '2432783449@qq.com'), ('created_time', '2021-05-29T09:40:46.351382'), ('uppername', 'LHH')])

11. “只读”与“只写”字段

在Web API的上下文中,序列化参数dump_only和反序列化参数load_only在概念上分别等同于只读和只写字段。

from marshmallow import Schema,fields


class UserSchema(Schema):
    name = fields.Str()
    password = fields.Str(load_only=True)  # 等于只写
    created_at = fields.DateTime(dump_only=True)  # 等于只读

load时,dump_only字段被视为未知字段。如果unknown选项设置为include,则与这些字段对应的键的值将因此loaded而不进行验证。

12. 序列化/反序列化时指定字段的默认值

序列化时输入值缺失用default指定默认值。反序列化时输入值缺失用missing指定默认值。

#encoding=utf-8
import uuid
import datetime as dt
from marshmallow import fields,ValidationError,Schema


class UserSchema(Schema):
    id = fields.UUID(missing=uuid.uuid1)
    birthday = fields.DateTime(default=dt.datetime(1996,11,17))

# 序列化
res = UserSchema().dump({})
print(res)
# {'birthday': '1996-11-17T00:00:00'}

# 反序列化
res = UserSchema().load({'birthday': '1996-11-17T00:00:00'})
print(res)
# {'id': UUID('751d95db-c020-11eb-83eb-001a7dda7115'), 'birthday': datetime.datetime(1996, 11, 17, 0, 0)}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值