扩展欧几里得算法(exgcd)

扩展欧几里得算法

e x g c d exgcd exgcd一般是用来求解 a x + b y = c ax+by=c ax+by=c这样的方程的。

首先,我们可以证明 a x + b y = gcd ⁡ ( a , b ) ax+by=\gcd(a,b) ax+by=gcd(a,b)。证明如下:

假设我们已经证得 b x ′ + ( a   m o d   b ) y ′ = gcd ⁡ ( b , a   m o d   b ) ( a   m o d   b ≠ 0 ) bx'+(a \ mod \ b)y'=\gcd(b,a \ mod \ b)(a \ mod \ b \neq 0) bx+(a mod b)y=gcd(b,a mod b)(a mod b=0)
a x + b y = gcd ⁡ ( a , b ) a x + b y = gcd ⁡ ( b , a   m o d   b ) a x + b y = b x ′ + ( a   m o d   b ) y ′ = b x ′ + ( a − ⌊ a b ⌋ × b ) y ′ = b x ′ + a y ′ − ⌊ a b ⌋ × b y ′ = a y ′ + b ( x ′ − ⌊ a b ⌋ y ′ ) \begin{aligned} ax+by&=\gcd(a,b) \\ ax+by&=\gcd(b,a \ mod \ b) \\ ax+by&=bx'+(a \ mod \ b)y' \\ &=bx'+(a-\lfloor\frac{a}{b}\rfloor\times b)y' \\ &=bx'+ay'-\lfloor\frac{a}{b}\rfloor\times by' \\ &=ay'+b(x'-\lfloor\frac{a}{b}\rfloor y') \end{aligned} ax+byax+byax+by=gcd(a,b)=gcd(b,a mod b)=bx+(a mod b)y=bx+(aba×b)y=bx+ayba×by=ay+b(xbay)

a x + b y = a y ′ + b ( x ′ − ⌊ a b ⌋ y ′ ) ax+by=ay'+b(x'-\lfloor\frac{a}{b}\rfloor y') ax+by=ay+b(xbay)

{ x = y ′ y = x ′ − ⌊ a b ⌋ y ′ \left\{\begin{matrix}x=y'\\y=x'-\lfloor\frac{a}{b}\rfloor y'\end{matrix}\right. {x=yy=xbay

a   m o d   b = 0 a \ mod \ b=0 a mod b=0时, a x + b y = gcd ⁡ ( a , b ) = b ax+by=\gcd(a,b)=b ax+by=gcd(a,b)=b,所以此时 x = 0 , y = 1 x=0,y=1 x=0,y=1

所以 a x + b y = gcd ⁡ ( a , b ) ax+by=\gcd(a,b) ax+by=gcd(a,b)是有解的,那么当 g c d ( a , b ) ∣ c gcd(a,b)|c gcd(a,b)c时, a x + b y = c ax+by=c ax+by=c也是有解的,递归求解即可。

code

void exgcd(int a,int b){
	if(b==0){
		x=1;y=0;d=a;
		return;
	}
	exgcd(b,a%b);
	int t=x;x=y;y=t-a/b*y;
}

例题

P5656 【模板】二元一次不定方程 (exgcd)

#include<bits/stdc++.h>
using namespace std;
int t;
long long x,y,d;
void exgcd(int a,int b){
	if(b==0){
		x=1;y=0;d=a;
		return;
	}
	exgcd(b,a%b);
	long long t=x;x=y;y=t-a/b*y;
}
int main()
{
	long long a,b,c,vk,v1,v2,v3,v4;
	scanf("%d",&t);
	while(t--){
		scanf("%lld%lld%lld",&a,&b,&c);
		exgcd(a,b);
		if(c%d>0){
			printf("-1\n");
			continue;
		}
		x=x*c/d;y=y*c/d;
		a/=d;b/=d;
		if(y<0){
			vk=-y/a;
			x-=vk*b;y+=vk*a;
		}
		while(y<=0){
			x-=b;y+=a;
		}
		if(x<0){
			vk=-x/b;
			x+=vk*b;y-=vk*a;
		}
		while(x<=0){
			x+=b;y-=a;
		}
		if(x>0&&y>0){
			vk=x/b;
			x-=vk*b;y+=vk*a;
			if(x==0){
				x+=b;y-=a;
			}
			v1=x;v4=y;
			vk=y/a;
			x+=vk*b;y-=vk*a;
			if(y==0){
				x-=b;y+=a;
			}
			v3=x;v2=y;
			printf("%lld %lld %lld %lld %lld\n",(v3-v1)/b+1,v1,v2,v3,v4);
		}
		else{
			v1=x;
			vk=-y/a;
			y+=vk*a;x-=vk*b;
			while(y<=0){
				x-=b;y+=a;
			}
			v2=y;
			printf("%lld %lld\n",v1,v2);
		}
	}
	return 0;
} 
扩展欧几里得算法是求解一元一次不定方程 ax + by = gcd(a,b) 的一种方法,其中 a 和 b 是整数,gcd(a,b) 是它们的最大公约数,x 和 y 是整数解。逆元是指在模运算下,一个数的乘法逆元是指与它相乘后模运算得到 1 的数。在数论中,常常需要求一个数在模意义下的逆元,即一个数 k 满足 (k * x) % m = 1,其中 m 是模数。 下面是扩展欧几里得算法求逆元的 C 语言实现: ```c #include <stdio.h> // 扩展欧几里得算法 int exgcd(int a, int b, int *x, int *y) { if (b == 0) { *x = 1; *y = 0; return a; } int gcd = exgcd(b, a % b, y, x); *y -= a / b * (*x); return gcd; } // 求逆元 int modinv(int a, int m) { int x, y; int gcd = exgcd(a, m, &x, &y); if (gcd != 1) { return -1; // a 和 m 不互质,不存在逆元 } else { return (x % m + m) % m; // 转化为正整数 } } int main() { int a = 3, m = 11; int inv = modinv(a, m); if (inv == -1) { printf("%d 在模 %d 意义下不存在逆元\n", a, m); } else { printf("%d 在模 %d 意义下的逆元是 %d\n", a, m, inv); } return 0; } ``` 这个程序中,exgcd 函数通过递归实现扩展欧几里得算法,返回 a 和 b 的最大公约数,并且求出 x 和 y 的值。在 modinv 函数中,我们调用 exgcd 函数求出 a 和 m 的最大公约数,并且判断 a 和 m 是否互质,如果不互质则不存在逆元。否则,根据扩展欧几里得算法的结果,求出 x 的值作为 a 在模 m 意义下的逆元。注意,由于 x 可能是负数,所以要将其转化为正整数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值