Matplolib教程及查询

Matplotlib

这是一个分为四部分的Matplolib教程。

1st 部分:

第一部分介绍了Matplotlib基本功能,基本figure类型。

Simple Plotting example

In [113]:
%matplotlib inline 
import matplotlib.pyplot as plt #importing matplot lib library import numpy as np x = range(100) #print x, print and check what is x y =[val**2 for val in x] #print y plt.plot(x,y) #plotting x and y 
Out[113]:
[<matplotlib.lines.Line2D at 0x7857bb0>]
 
 
fig, axes = plt.subplots(nrows=1, ncols=2) for ax in axes: ax.plot(x, y, 'r') ax.set_xlabel('x') ax.set_ylabel('y') ax.set_title('title') fig.tight_layout() 
 
fig, ax = plt.subplots() ax.plot(x, x**2, label="y = x**2") ax.plot(x, x**3, label="y = x**3") ax.legend(loc=2); # upper left corner ax.set_xlabel('x') ax.set_ylabel('y') ax.set_title('title'); 
 
fig, axes = plt.subplots(1, 2, figsize=(10,4)) axes[0].plot(x, x**2, x, np.exp(x)) axes[0].set_title("Normal scale") axes[1].plot(x, x**2, x, np.exp(x)) axes[1].set_yscale("log") axes[1].set_title("Logarithmic scale (y)"); 
 
n = np.array([0,1,2,3,4,5]) 
In [47]:
fig, axes = plt.subplots(1, 4, figsize=(12,3)) axes[0].scatter(xx, xx + 0.25*np.random.randn(len(xx))) axes[0].set_title("scatter") axes[1].step(n, n**2, lw=2) axes[1].set_title("step") axes[2].bar(n, n**2, align="center", width=0.5, alpha=0.5) axes[2].set_title("bar") axes[3].fill_between(x, x**2, x**3, color="green", alpha=0.5); axes[3].set_title("fill_between"); 
 
 

Using Numpy

In [17]:
x = np.linspace(0, 2*np.pi, 100) y =np.sin(x) plt.plot(x,y) 
Out[17]:
[<matplotlib.lines.Line2D at 0x579aef0>]
 
In [24]:
x= np.linspace(-3,2, 200) Y = x ** 2 - 2 * x + 1. plt.plot(x,Y) 
Out[24]:
[<matplotlib.lines.Line2D at 0x6ffb310>]
 
In [32]:
# plotting multiple plots
x =np.linspace(0, 2 * np.pi, 100) y = np.sin(x) z = np.cos(x) plt.plot(x,y) plt.plot(x,z) plt.show() # Matplot lib picks different colors for different plot. 
 
In [35]:
cd C:\Users\tk\Desktop\Matplot 
 
C:\Users\tk\Desktop\Matplot
In [39]:
data = np.loadtxt('numpy.txt') plt.plot(data[:,0], data[:,1]) # plotting column 1 vs column 2 # The text in the numpy.txt should look like this # 0 0 # 1 1 # 2 4 # 4 16 # 5 25 # 6 36 
Out[39]:
[<matplotlib.lines.Line2D at 0x740f090>]
 
In [56]:
data1 = np.loadtxt('scipy.txt') # load the file print data1.T for val in data1.T: #loop over each and every value in data1.T plt.plot(data1[:,0], val) #data1[:,0] is the first row in data1.T # data in scipy.txt looks like this: # 0 0 6 # 1 1 5 # 2 4 4 # 4 16 3 # 5 25 2 # 6 36 1 
 
[[  0.   1.   2.   4.   5.   6.]
 [  0.   1.   4.  16.  25.  36.]
 [  6.   5.   4.   3.   2.   1.]]
 
 

Scatter Plots and Bar Graphs

In [64]:
sct = np.random.rand(20, 2) print sct plt.scatter(sct[:,0], sct[:,1]) # I am plotting a scatter plot. 
 
[[ 0.51454542  0.61859101]
 [ 0.45115993  0.69774873]
 [ 0.29051205  0.28594808]
 [ 0.73240446  0.41905186]
 [ 0.23869394  0.5238878 ]
 [ 0.38422814  0.31108919]
 [ 0.52218967  0.56526379]
 [ 0.60760426  0.80247073]
 [ 0.37239096  0.51279078]
 [ 0.45864677  0.28952167]
 [ 0.8325996   0.28479446]
 [ 0.14609382  0.8275477 ]
 [ 0.86338279  0.87428696]
 [ 0.55481585  0.24481165]
 [ 0.99553336  0.79511137]
 [ 0.55025277  0.67267026]
 [ 0.39052024  0.65924857]
 [ 0.66868207  0.25186664]
 [ 0.64066313  0.74589812]
 [ 0.20587731  0.64977807]]
Out[64]:
<matplotlib.collections.PathCollection at 0x78a7110>
 
In [65]:
ghj =[5, 10 ,15, 20, 25] it =[ 1, 2, 3, 4, 5] plt.bar(ghj, it) # simple bar graph 
Out[65]:
<Container object of 5 artists>
 
In [74]:
ghj =[5, 10 ,15, 20, 25] it =[ 1, 2, 3, 4, 5] plt.bar(ghj, it, width =5)# you can change the thickness of a bar, by default the bar will have a thickness of 0.8 units 
Out[74]:
<Container object of 5 artists>
 
In [75]:
ghj =[5, 10 ,15, 20, 25] it =[ 1, 2, 3, 4, 5] plt.barh(ghj, it) # barh is a horizontal bar graph 
Out[75]:
<Container object of 5 artists>
 
 

Multiple bar charts

In [95]:
new_list = [[5., 25., 50., 20.], [4., 23., 51., 17.], [6., 22., 52., 19.]] x = np.arange(4) plt.bar(x + 0.00, new_list[0], color ='b', width =0.25) plt.bar(x + 0.25, new_list[1], color ='r', width =0.25) plt.bar(x + 0.50, new_list[2], color ='g', width =0.25) #plt.show() 
 
In [100]:
#Stacked Bar charts
p = [5., 30., 45., 22.] q = [5., 25., 50., 20.] x =range(4) plt.bar(x, p, color ='b') plt.bar(x, q, color ='y', bottom =p) 
Out[100]:
<Container object of 4 artists>
 
In [35]:
# plotting more than 2 values
A = np.array([5., 30., 45., 22.]) B = np.array([5., 25., 50., 20.]) C = np.array([1., 2., 1., 1.]) X = np.arange(4) plt.bar(X, A, color = 'b') plt.bar(X, B, color = 'g', bottom = A) plt.bar(X, C, color = 'r', bottom = A + B) # for the third argument, I use A+B plt.show() 
 
In [94]:
black_money = np.array([5., 30., 45., 22.]) white_money = np.array([5., 25., 50., 20.]) z = np.arange(4) plt.barh(z, black_money, color ='g') plt.barh(z, -white_money, color ='r')# - notation is needed for generating, back to back charts 
Out[94]:
<Container object of 4 artists>
 
 

Other Plots

In [114]:
#Pie charts
y = [5, 25, 45, 65] plt.pie(y) 
Out[114]:
([<matplotlib.patches.Wedge at 0x7a19d50>,
  <matplotlib.patches.Wedge at 0x7a252b0>,
  <matplotlib.patches.Wedge at 0x7a257b0>,
  <matplotlib.patches.Wedge at 0x7a25cb0>],
 [<matplotlib.text.Text at 0x7a25070>,
  <matplotlib.text.Text at 0x7a25550>,
  <matplotlib.text.Text at 0x7a25a50>,
  <matplotlib.text.Text at 0x7a25f50>])
 
In [115]:
#Histograms
d = np.random.randn(100) plt.hist(d, bins = 20) 
Out[115]:
(array([  2.,   3.,   2.,   1.,   2.,   6.,   5.,   7.,  10.,  12.,   9.,
         12.,  11.,   5.,   6.,   4.,   1.,   0.,   1.,   1.]),
 array([-2.9389701 , -2.64475645, -2.35054281, -2.05632916, -1.76211551,
        -1.46790186, -1.17368821, -0.87947456, -0.58526092, -0.29104727,
         0.00316638,  0.29738003,  0.59159368,  0.88580733,  1.18002097,
         1.47423462,  1.76844827,  2.06266192,  2.35687557,  2.65108921,
         2.94530286]),
 <a list of 20 Patch objects>)
 
In [116]:
d = np.random.randn(100) plt.boxplot(d) #1) The red bar is the median of the distribution #2) The blue box includes 50 percent of the data from the lower quartile to the upper quartile. # Thus, the box is centered on the median of the data. 
Out[116]:
{'boxes': [<matplotlib.lines.Line2D at 0x7cca090>],
 'caps': [<matplotlib.lines.Line2D at 0x7c02d70>,
  <matplotlib.lines.Line2D at 0x7cc2c90>],
 'fliers': [<matplotlib.lines.Line2D at 0x7cca850>,
  <matplotlib.lines.Line2D at 0x7ccae10>],
 'medians': [<matplotlib.lines.Line2D at 0x7cca470>],
 'whiskers': [<matplotlib.lines.Line2D at 0x7c02730>,
  <matplotlib.lines.Line2D at 0x7cc24b0>]}
 
In [118]:
d = np.random.randn(100, 5) # generating multiple box plots plt.boxplot(d) 
Out[118]:
{'boxes': [<matplotlib.lines.Line2D at 0x7f49d70>,
  <matplotlib.lines.Line2D at 0x7ea1c90>,
  <matplotlib.lines.Line2D at 0x7eafb90>,
  <matplotlib.lines.Line2D at 0x7ebea90>,
  <matplotlib.lines.Line2D at 0x7ece990>],
 'caps': [<matplotlib.lines.Line2D at 0x7f2b3b0>,
  <matplotlib.lines.Line2D at 0x7f49990>,
  <matplotlib.lines.Line2D at 0x7ea14d0>,
  <matplotlib.lines.Line2D at 0x7ea18b0>,
  <matplotlib.lines.Line2D at 0x7eaf3d0>,
  <matplotlib.lines.Line2D at 0x7eaf7b0>,
  <matplotlib.lines.Line2D at 0x7ebe2d0>,
  <matplotlib.lines.Line2D at 0x7ebe6b0>,
  <matplotlib.lines.Line2D at 0x7ece1d0>,
  <matplotlib.lines.Line2D at 0x7ece5b0>],
 'fliers': [<matplotlib.lines.Line2D at 0x7e98550>,
  <matplotlib.lines.Line2D at 0x7e98930>,
  <matplotlib.lines.Line2D at 0x7ea8470>,
  <matplotlib.lines.Line2D at 0x7ea8a10>,
  <matplotlib.lines.Line2D at 0x7eb6370>,
  <matplotlib.lines.Line2D at 0x7eb6730>,
  <matplotlib.lines.Line2D at 0x7ec6270>,
  <matplotlib.lines.Line2D at 0x7ec6810>,
  <matplotlib.lines.Line2D at 0x8030170>,
  <matplotlib.lines.Line2D at 0x8030710>],
 'medians': [<matplotlib.lines.Line2D at 0x7e98170>,
  <matplotlib.lines.Line2D at 0x7ea8090>,
  <matplotlib.lines.Line2D at 0x7eaff70>,
  <matplotlib.lines.Line2D at 0x7ebee70>,
  <matplotlib.lines.Line2D at 0x7eced70>],
 'whiskers': [<matplotlib.lines.Line2D at 0x7f2bb50>,
  <matplotlib.lines.Line2D at 0x7f491b0>,
  <matplotlib.lines.Line2D at 0x7e98cf0>,
  <matplotlib.lines.Line2D at 0x7ea10f0>,
  <matplotlib.lines.Line2D at 0x7ea8bf0>,
  <matplotlib.lines.Line2D at 0x7ea8fd0>,
  <matplotlib.lines.Line2D at 0x7eb6cd0>,
  <matplotlib.lines.Line2D at 0x7eb6ed0>,
  <matplotlib.lines.Line2D at 0x7ec6bd0>,
  <matplotlib.lines.Line2D at 0x7ec6dd0>]}
 

MatplotLib Part 1

2nd 部分:

包含了怎么调整figure的样式和颜色,例如:makers,line,thicness,line patterns和color map.

%matplotlib inline
import numpy as np import matplotlib.pyplot as plt 
In [22]:
p =np.random.standard_normal((50,2)) p += np.array((-1,1)) # center the distribution at (-1,1) q =np.random.standard_normal((50,2)) q += np.array((1,1)) #center the distribution at (-1,1) plt.scatter(p[:,0], p[:,1], color ='.25') plt.scatter(q[:,0], q[:,1], color = '.75') 
Out[22]:
<matplotlib.collections.PathCollection at 0x71dab90>
 
In [34]:
dd =np.random.standard_normal((50,2)) plt.scatter(dd[:,0], dd[:,1], color ='1.0', edgecolor ='0.0') # edge color controls the color of the edge 
Out[34]:
<matplotlib.collections.PathCollection at 0x7336670>
 
 

Custom Color for Bar charts,Pie charts and box plots: 
The below bar graph, plots x(1 to 50) (vs) y(50 random integers, within 0-100. But you need different colors for each value. For which we create a list containing four colors(color_set). The list comprehension creates 50 different color values from color_set

In [9]:
vals = np.random.random_integers(99, size =50) color_set = ['.00', '.25', '.50','.75'] color_lists = [color_set[(len(color_set)* val) // 100] for val in vals] c = plt.bar(np.arange(50), vals, color = color_lists) 
 
In [8]:
hi =np.random.random_integers(8, size =10) color_set =['.00', '.25', '.50', '.75'] plt.pie(hi, colors = color_set)# colors attribute accepts a range of values plt.show() #If there are less colors than values, then pyplot.pie() will simply cycle through the color list. In the preceding #example, we gave a list of four colors to color a pie chart that consisted of eight values. Thus, each color will be used twice 
 
In [27]:
values = np.random.randn(100) w = plt.boxplot(values) for att, lines in w.iteritems(): for l in lines: l.set_color('k') 
 
 

Color Maps

 

know more about hsv

In [34]:
# how to color scatter plots
#Colormaps are defined in the matplotib.cm module. This module provides 
#functions to create and use colormaps. It also provides an exhaustive choice of predefined color maps.
import matplotlib.cm as cm N = 256 angle = np.linspace(0, 8 * 2 * np.pi, N) radius = np.linspace(.5, 1., N) X = radius * np.cos(angle) Y = radius * np.sin(angle) plt.scatter(X,Y, c=angle, cmap = cm.hsv) 
Out[34]:
<matplotlib.collections.PathCollection at 0x714d9f0>
 
In [44]:
#Color in bar graphs
import matplotlib.cm as cm
vals = np.random.random_integers(99, size =50) cmap = cm.ScalarMappable(col.Normalize(0,99), cm.binary) plt.bar(np.arange(len(vals)),vals, color =cmap.to_rgba(vals)) 
Out[44]:
<Container object of 50 artists>
 
 

Line Styles

In [4]:
# I am creating 3 levels of gray plots, with different line shades 


def pq(I, mu, sigma): a = 1. / (sigma * np.sqrt(2. * np.pi)) b = -1. / (2. * sigma ** 2) return a * np.exp(b * (I - mu) ** 2) I =np.linspace(-6,6, 1024) plt.plot(I, pq(I, 0., 1.), color = 'k', linestyle ='solid') plt.plot(I, pq(I, 0., .5), color = 'k', linestyle ='dashed') plt.plot(I, pq(I, 0., .25), color = 'k', linestyle ='dashdot') 
Out[4]:
[<matplotlib.lines.Line2D at 0x562ffb0>]
 
In [12]:
N = 15
A = np.random.random(N) B= np.random.random(N) X = np.arange(N) plt.bar(X, A, color ='.75') plt.bar(X, A+B , bottom = A, color ='W', linestyle ='dashed') # plot a bar graph plt.show() 
 
In [20]:
def gf(X, mu, sigma): a = 1. / (sigma * np.sqrt(2. * np.pi)) b = -1. / (2. * sigma ** 2) return a * np.exp(b * (X - mu) ** 2) X = np.linspace(-6, 6, 1024) for i in range(64): samples = np.random.standard_normal(50) mu,sigma = np.mean(samples), np.std(samples) plt.plot(X, gf(X, mu, sigma), color = '.75', linewidth = .5) plt.plot(X, gf(X, 0., 1.), color ='.00', linewidth = 3.) 
Out[20]:
[<matplotlib.lines.Line2D at 0x59fbab0>]
 
 

Fill surfaces with pattern

In [27]:
N = 15
A = np.random.random(N) B= np.random.random(N) X = np.arange(N) plt.bar(X, A, color ='w', hatch ='x') plt.bar(X, A+B,bottom =A, color ='r', hatch ='/') # some other hatch attributes are : #/ #\ #| #- #+ #x #o #O #. #* 
Out[27]:
<Container object of 15 artists>
 
 

Marker styles

In [29]:
cd C:\Users\tk\Desktop\Matplot 
 
C:\Users\tk\Desktop\Matplot
 

Come back to this section later

In [14]:
X= np.linspace(-6,6,1024) Ya =np.sinc(X) Yb = np.sinc(X) +1 plt.plot(X, Ya, marker ='o', color ='.75') plt.plot(X, Yb, marker ='^', color='.00', markevery= 32)# this one marks every 32 nd element 
Out[14]:
[<matplotlib.lines.Line2D at 0x7063150>]
 
In [31]:
# Marker Size
A = np.random.standard_normal((50,2)) A += np.array((-1,1)) B = np.random.standard_normal((50,2)) B += np.array((1, 1)) plt.scatter(A[:,0], A[:,1], color ='k', s =25.0) plt.scatter(B[:,0], B[:,1], color ='g', s = 100.0) # size of the marker is specified using 's' attribute 
Out[31]:
<matplotlib.collections.PathCollection at 0x7d015f0>
 
 

Own Marker Shapes- come back to this later

In [65]:
# more about markers
X =np.linspace(-6,6, 1024) Y =np.sinc(X) plt.plot(X,Y, color ='r', marker ='o', markersize =9, markevery = 30, markerfacecolor='w', linewidth = 3.0, markeredgecolor = 'b') 
Out[65]:
[<matplotlib.lines.Line2D at 0x84c9750>]
 
In [20]:
import matplotlib as mpl
mpl.rc('lines', linewidth =3) mpl.rc('xtick', color ='w') # color of x axis numbers mpl.rc('ytick', color = 'w') # color of y axis numbers mpl.rc('axes', facecolor ='g', edgecolor ='y') # color of axes mpl.rc('figure', facecolor ='.00',edgecolor ='w') # color of figure mpl.rc('axes', color_cycle = ('y','r')) # color of plots x = np.linspace(0, 7, 1024) plt.plot(x, np.sin(x)) plt.plot(x, np.cos(x)) 
Out[20]:
[<matplotlib.lines.Line2D at 0x7b0fb70>]
 

MatplotLib Part2

3rd 部分:

图的注释--包含若干图,控制坐标轴范围,长款比和坐标轴。

Annotation

In [1]:
%matplotlib inline
import numpy as np import matplotlib.pyplot as plt 
In [28]:
X =np.linspace(-6,6, 1024) Y =np.sinc(X) plt.title('A simple marker exercise')# a title notation plt.xlabel('array variables') # adding xlabel plt.ylabel(' random variables') # adding ylabel plt.text(-5, 0.4, 'Matplotlib') # -5 is the x value and 0.4 is y value plt.plot(X,Y, color ='r', marker ='o', markersize =9, markevery = 30, markerfacecolor='w', linewidth = 3.0, markeredgecolor = 'b') 
Out[28]:
[<matplotlib.lines.Line2D at 0x84b6430>]
 
In [39]:
def pq(I, mu, sigma): a = 1. / (sigma * np.sqrt(2. * np.pi)) b = -1. / (2. * sigma ** 2) return a * np.exp(b * (I - mu) ** 2) I =np.linspace(-6,6, 1024) plt.plot(I, pq(I, 0., 1.), color = 'k', linestyle ='solid') plt.plot(I, pq(I, 0., .5), color = 'k', linestyle ='dashed') plt.plot(I, pq(I, 0., .25), color = 'k', linestyle ='dashdot') # I have created a dictinary of styles design = { 'facecolor' : 'y', # color used for the text box 'edgecolor' : 'g', 'boxstyle' : 'round' } plt.text(-4, 1.5, 'Matplot Lib', bbox = design) plt.plot(X, Y, c='k') plt.show() #This sets the style of the box, which can either be 'round' or 'square' #'pad': If 'boxstyle' is set to 'square', it defines the amount of padding between the text and the box's sides 
 
 

Alignment Control

The text is bound by a box. This box is used to relatively align the text to the coordinates passed to pyplot.text(). Using the verticalalignment and horizontalalignment parameters (respective shortcut equivalents are va and ha), we can control how the alignment is done.

The vertical alignment options are as follows:
'center': This is relative to the center of the textbox
'top': This is relative to the upper side of the textbox
'bottom': This is relative to the lower side of the textbox
'baseline': This is relative to the text's baseline

Horizontal alignment options are as follows:

align ='bottom'                               align ='baseline'
------------------------align = center-------------------------------------- 
align= 'top

In [41]:
cd C:\Users\tk\Desktop 
 
C:\Users\tk\Desktop
In [44]:
from IPython.display import Image
Image(filename='text alignment.png') #The horizontal alignment options are as follows: #'center': This is relative to the center of the textbox #'left': This is relative to the left side of the textbox #'right': This is relative to the right-hand side of the textbox 
Out[44]:
In [76]:
X = np.linspace(-4, 4, 1024) Y = .25 * (X + 4.) * (X + 1.) * (X - 2.) plt.annotate('Big Data', ha ='center', va ='bottom', xytext =(-1.5, 3.0), xy =(0.75, -2.7), arrowprops ={'facecolor': 'green', 'shrink':0.05, 'edgecolor': 'black'}) #arrow properties plt.plot(X, Y) 
Out[76]:
[<matplotlib.lines.Line2D at 0x9d1def0>]
 
In [74]:
#arrow styles are :

from IPython.display import Image
Image(filename='arrows.png') 
Out[74]:
 

Legend properties: 
'loc': This is the location of the legend. The default value is 'best', which will place it automatically. Other valid values are
'upper left', 'lower left', 'lower right', 'right', 'center left', 'center right', 'lower center', 'upper center', and 'center'.

'shadow': This can be either True or False, and it renders the legend with a shadow effect.

'fancybox': This can be either True or False and renders the legend with a rounded box.

'title': This renders the legend with the title passed as a parameter.

'ncol': This forces the passed value to be the number of columns for the legend

In [101]:
x =np.linspace(0, 6,1024) y1 =np.sin(x) y2 =np.cos(x) plt.xlabel('Sin Wave') plt.ylabel('Cos Wave') plt.plot(x, y1, c='b', lw =3.0, label ='Sin(x)') # labels are specified plt.plot(x, y2, c ='r', lw =3.0, ls ='--', label ='Cos(x)') plt.legend(loc ='best', shadow = True, fancybox = False, title ='Waves', ncol =1) # displays the labels plt.grid(True, lw = 2, ls ='--', c='.75') # adds grid lines to the figure plt.show() 
 
 

Shapes

In [4]:
#Paths for several kinds of shapes are available in the matplotlib.patches module
import matplotlib.patches as patches

dis = patches.Circle((0,0), radius = 1.0, color ='.75' ) plt.gca().add_patch(dis) # used to render the image. dis = patches.Rectangle((2.5, -.5), 2.0, 1.0, color ='.75') #patches.rectangle((x & y coordinates), length, breadth) plt.gca().add_patch(dis) dis = patches.Ellipse((0, -2.0), 2.0, 1.0, angle =45, color ='.00') plt.gca().add_patch(dis) dis = patches.FancyBboxPatch((2.5, -2.5), 2.0, 1.0, boxstyle ='roundtooth', color ='g') plt.gca().add_patch(dis) plt.grid(True) plt.axis('scaled') # displays the images within the prescribed axis plt.show() #FancyBox: This is like a rectangle but takes an additional boxstyle parameter #(either 'larrow', 'rarrow', 'round', 'round4', 'roundtooth', 'sawtooth', or 'square') 
 
In [22]:
import matplotlib.patches as patches
theta = np.linspace(0, 2 * np.pi, 8) # generates an array vertical = np.vstack((np.cos(theta), np.sin(theta))).transpose() # vertical stack clubs the two arrays. #print vertical, print and see how the array looks plt.gca().add_patch(patches.Polygon(vertical, color ='y')) plt.axis('scaled') plt.grid(True) plt.show() #The matplotlib.patches.Polygon()constructor takes a list of coordinates as the inputs, that is, the vertices of the polygon 
 
In [34]:
# a polygon can be imbided into a circle
theta = np.linspace(0, 2 * np.pi, 6) # generates an array vertical = np.vstack((np.cos(theta), np.sin(theta))).transpose() # vertical stack clubs the two arrays. #print vertical, print and see how the array looks plt.gca().add_patch(plt.Circle((0,0), radius =1.0, color ='b')) plt.gca().add_patch(plt.Polygon(vertical, fill =None, lw =4.0, ls ='dashed', edgecolor ='w')) plt.axis('scaled') plt.grid(True) plt.show() 
 
 

Ticks in Matplotlib

In [54]:
#In matplotlib, ticks are small marks on both the axes of a figure
import matplotlib.ticker as ticker
X = np.linspace(-12, 12, 1024) Y = .25 * (X + 4.) * (X + 1.) * (X - 2.) pl =plt.axes() #the object that manages the axes of a figure pl.xaxis.set_major_locator(ticker.MultipleLocator(5)) pl.xaxis.set_minor_locator(ticker.MultipleLocator(1)) plt.plot(X, Y, c = 'y') plt.grid(True, which ='major') # which can take three values: minor, major and both plt.show() 
 
In [59]:
name_list = ('Omar', 'Serguey', 'Max', 'Zhou', 'Abidin') value_list = np.random.randint(0, 99, size = len(name_list)) pos_list = np.arange(len(name_list)) ax = plt.axes() ax.xaxis.set_major_locator(ticker.FixedLocator((pos_list))) ax.xaxis.set_major_formatter(ticker.FixedFormatter((name_list))) plt.bar(pos_list, value_list, color = '.75',align = 'center') plt.show() 
 

MatplotLib Part3

4th 部分:

包含了一些复杂图形。

Working with figures

In [4]:
%matplotlib inline
import numpy as np import matplotlib.pyplot as plt 
In [5]:
T = np.linspace(-np.pi, np.pi, 1024) # fig, (ax0, ax1) = plt.subplots(ncols =2) ax0.plot(np.sin(2 * T), np.cos(0.5 * T), c = 'k') ax1.plot(np.cos(3 * T), np.sin(T), c = 'k') plt.show() 
 
 

Setting aspect ratio

In [7]:
T = np.linspace(0, 2 * np.pi, 1024) plt.plot(2. * np.cos(T), np.sin(T), c = 'k', lw = 3.) plt.axes().set_aspect('equal') # remove this line of code and see how the figure looks plt.show() 
 
In [12]:
X = np.linspace(-6, 6, 1024) Y1, Y2 = np.sinc(X), np.cos(X) plt.figure(figsize=(10.24, 2.56)) #sets size of the figure plt.plot(X, Y1, c='r', lw = 3.) plt.plot(X, Y2, c='.75', lw = 3.) plt.show() 
 
In [8]:
X = np.linspace(-6, 6, 1024) plt.ylim(-.5, 1.5) plt.plot(X, np.sinc(X), c = 'k') plt.show() 
 
In [16]:
X = np.linspace(-6, 6, 1024) Y = np.sinc(X) X_sub = np.linspace(-3, 3, 1024)#coordinates of subplot Y_sub = np.sinc(X_sub) # coordinates of sub plot plt.plot(X, Y, c = 'b') sub_axes = plt.axes([.6, .6, .25, .25])# coordinates, length and width of the subplot frame sub_axes.plot(X_detail, Y_detail, c = 'r') plt.show() 
 
 

Log Scale

In [20]:
X = np.linspace(1, 10, 1024) plt.yscale('log') # set y scale as log. we would use plot.xscale() plt.plot(X, X, c = 'k', lw = 2., label = r'$f(x)=x$') plt.plot(X, 10 ** X, c = '.75', ls = '--', lw = 2., label = r'$f(x)=e^x$') plt.plot(X, np.log(X), c = '.75', lw = 2., label = r'$f(x)=\log(x)$') plt.legend() plt.show() #The logarithm base is 10 by default, but it can be changed with the optional parameters basex and basey. 
 
 

Polar Coordinates

In [23]:
T = np.linspace(0 , 2 * np.pi, 1024) plt.axes(polar = True) # show polar coordinates plt.plot(T, 1. + .25 * np.sin(16 * T), c= 'k') plt.show() 
 
In [25]:
import matplotlib.patches as patches # import patch module from matplotlib
ax = plt.axes(polar = True) theta = np.linspace(0, 2 * np.pi, 8, endpoint = False) radius = .25 + .75 * np.random.random(size = len(theta)) points = np.vstack((theta, radius)).transpose() plt.gca().add_patch(patches.Polygon(points, color = '.75')) plt.show() 
 
In [2]:
x = np.linspace(-6,6,1024) y= np.sin(x) plt.plot(x,y) plt.savefig('bigdata.png', c= 'y', transparent = True) #savefig function writes that data to a file # will create a file named bigdata.png. Its resolution will be 800 x 600 pixels, in 8-bit colors (24-bits per pixel) 
 
In [3]:
theta =np.linspace(0, 2 *np.pi, 8) points =np.vstack((np.cos(theta), np.sin(theta))).T plt.figure(figsize =(6.0, 6.0)) plt.gca().add_patch(plt.Polygon(points, color ='r')) plt.axis('scaled') plt.grid(True) plt.savefig('pl.png', dpi =300) # try 'pl.pdf', pl.svg' #dpi is dots per inch. 300*8 x 6*300 = 2400 x 1800 pixels 
 

MatplotLib Part4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值