SVM支持向量机

SVM在在解决小样本、非线性及高维模式识别中表现出许多特有的优势。建立在统计学习理论的VC维理论和结构风险最小原理基础上。

SVM的主要思想可以概括为两点:

⑴它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能。

⑵它基于结构风险最小化理论之上在特征空间中建构最优分割超平面(最大间隔),使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。(在设计时,需要用到条件极值问题的求解,因此需用拉格朗日乘子理论)

 

原理:

SVM方法是通过一个非线性映射p,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性可分的问题.简单地说,就是升维和线性化.升维,就是把样本向高维空间做映射,一般情况下这会增加计算的复杂性,甚至会引起“维数灾难”,因而人们很少问津.但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本集,在高维特征空间中却可以通过一个线性超平面实现线性划分(或回归).一般的升维都会带来计算的复杂化,SVM方法巧妙地解决了这个难题:应用核函数的展开定理,就不需要知道非线性映射的显式表达式;由于是在高维特征空间中建立线性学习机,所以与线性模型相比,不但几乎不增加计算的复杂性,而且在某种程度上避免了“维数灾难”.这一切要归功于核函数的展开和计算理论.

选择不同的核函数,可以生成不同的SVM,常用的核函数有以下4种:

⑴线性核函数K(x,y)=x·y;

⑵多项式核函数K(x,y)=[(x·y)+1]^d;

⑶径向基函数K(x,y)=exp(-|x-y|^2/d^2)

⑷二层神经网络核函数K(x,y)=tanh(a(x·y)+b).

 

一大亮点是在传统的最优化问题中提出了对偶理论,主要有最大最小对偶及拉格朗日对偶。

SVM的关键在于核函数。低维空间向量集通常难于划分,解决的方法是将它们映射到高维空间。但这个办法带来的困难就是计算复杂度的增加,而核函数正好巧妙地解决了这个问题。也就是说,只要选用适当的核函数,就可以得到高维空间的分类函数。在SVM理论中,采用不同的核函数将导致不同的SVM算法。

在确定了核函数之后,由于确定核函数的已知数据也存在一定的误差,考虑到推广性问题,因此引入了松弛系数以及惩罚系数两个参数来加以校正。在确定了核函数基础上,再经过大量对比实验等将这两个系数取定。


公式理解和推导:

http://blog.csdn.net/sunanger_wang/article/details/7887218


算法思想和代码:

http://www.csdn.net/article/2012-12-28/2813275-Support-Vector-Machine

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值