Example:Nelder-Mead Method


                     






The process continues and generates a sequence of triangles that converges down on thesolution point (3, 2) (see Figure 8.10). Table 8.6 gives the function values at vertices of thetriangle for several steps in the iteration. A computer implementation of the algorithm continueduntil the thirty-third step, where the best vertex was B = (2.99996456, 1.99983839)and f (B) = −6.99999998. These values are approximations to f (3, 2) = −7 found inExample 8.5. The reason that the iteration quit before (3, 2) was obtained is that the functionis flat near the minimum. The function values f (B), f (G), and f (W) were checked(see Table 8.6) and found to be the same (this is an example of round-off error), and thealgorithm was terminated





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值