LMDeploy 量化部署 LLM&VLM实战--全部作业

本文介绍了如何配置LMDeploy环境,包括下载并以命令行方式操作internlm-chat-1.8b模型,进阶任务涉及KVCache优化、W4A16量化、APIServer启动、多种客户端对话及Python集成,最后挑战视觉多模态模型llavagradiodemo的使用。
摘要由CSDN通过智能技术生成

一、基础作业部分

  • 配置lmdeploy运行环境,下载internlm-chat-1.8b模型

  • 以命令行方式与模型对话二、进阶作业 

  • 设置KV Cache最大占用比例为0.4,开启W4A16量化,以命令行方式与模型对话。(优秀学员必做)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值