Windows上的本地化部署deepseek-r1,独享DeepSeek,真香 ,使用python调用非常快

欢迎来到涛涛聊AI。        

Ollama是一个强大的工具,可以帮助你在本地轻松部署和管理大语言模型,如deepseek-r1。

        DeepSeek-R1是由DeepSeek团队开发的第一代高性能推理模型,旨在通过强化学习提升大语言模型的推理能力。该模型采用大规模专家混合(MoE)架构,参数规模高达6710亿,是许多开源大模型的10倍。DeepSeek-R1在数学、代码和推理任务上表现出色,尤其在长链推理(CoT)方面表现优异。此外,它还支持模型蒸馏,能够将推理能力迁移到小型模型上,提升其性能。DeepSeek-R1遵循MIT License开源,允许用户基于其进行进一步开发和商用。

以下是在Windows系统上使用Ollama安装和部署deepseek-r1的详细步骤。

一、安装Ollama

(一)下载Ollama(或者用我的网盘链接下载)

通过网盘分享的文件:OllamaSetup0.5.7.exe

链接: https://pan.baidu.com/s/1fE1dad4UBCQsUDZ7c_abVw 提取码: 15gg

  1. 打开浏览器,访问 Ollama官网。
  2. 在下载页面中,选择“Windows”选项卡,点击“Download for Windows ”按钮,开始下载Ollama的安装包。

(二)安装Ollama

  1. 下载完成后,双击下载的.exe安装包文件,启动安装程序。

  1. 按照安装向导的提示完成安装过程。Ollama默认安装路径为C:\Users\<username>\AppData\Local\Programs\Ollama

  1. 安装完成后,

提升完成安装后,有了默认的安装命令,

但我们要安装deepseek-r1,其实方法通用,只有ollama上有的都可以安装。

(三)验证Ollama安装

  1. 打开命令提示符或PowerShell,输入以下命令:ollama -h
  2. 如果看到Ollama的版本信息和帮助文档,说明安装成功。

常用命令

ollama serve       启动ollama
ollama create      从模型文件创建模型
ollama show        显示模型信息
ollama run         运行模型
ollama pull        从注册表中拉取模型
ollama push        将模型推送到注册表
ollama list        列出模型
ollama cp          复制模型
ollama rm          删除模型
ollama help        获取有关任何命令的帮助信息

二、配置Ollama(可选)

更改模型存储路径

  1. 如果需要更改Ollama存储下载模型的位置,可以在用户账户中设置环境变量OLLAMA_MODELS
  2. 启动设置(Windows 11)或控制面板(Windows 10),搜索“环境变量”。
  3. 点击“编辑账户环境变量”,编辑或创建一个新的用户账户或者系统变量OLLAMA_MODELS,设置为你希望存储模型的路径。

三、安装大模型

执行命令

ollama run deepseek-r1

可以根据自己的需求来下载不同参数的模型

发送消息

四、API调用

1、编写 Python 代码(非流式)

以下是一个简单的 Python 脚本示例,用于调用 Ollama 运行的 deepseek-r1:7b 模型:

import requests
import json

# Ollama API 的地址
url = "http://localhost:11434/api/generate"

# 定义请求的数据
data = {
    "model": "deepseek-r1:7b",  # 模型名称
    "prompt": "请编写一个关于少年努力的对联",  # 输入的提示信息
    "stream": False  # 是否使用流式响应
}

# 将数据转换为 JSON 格式
data_json = json.dumps(data)

# 设置请求头
headers = {
    "Content-Type": "application/json"
}

# 发送 POST 请求
try:
    response = requests.post(url, headers=headers, data=data_json)
    response.raise_for_status()  # 检查响应状态码
    result = response.json()
    print(result["response"])  # 打印模型的回复
except requests.exceptions.RequestException as e:
    print(f"请求出错: {e}")
except (KeyError, json.JSONDecodeError):
    print("解析响应数据出错")

D:\AiPro\wechat\pythonProject\.venv\Scripts\python.exe D:\AiPro\wechat\pythonProject\zimeiti\t2.py 
<think>
好的,用户让我写一个关于少年努力的对联。首先,我得理解对联的基本结构,上下联要相对称,内容上要相呼应。

上联方面,我想突出少年的活力和他们在逆境中的坚韧。所以用了“少男意气自凌云”来表现他们的雄心壮志,“在风风雨雨试身手”则描绘了他们在困难中锻炼自己的情景。

下联需要与上联对仗,同时表达出他们通过努力实现目标的决心。“少年志向须如水”强调了内心的坚定和持久,“润干功业总关情”则是希望他们的努力能带来长远的成功,并且过程中充满情怀。

整体来看,这个对联不仅押韵对仗工整,还紧扣主题,既表现了少年的奋斗精神,也寄托了对他们未来成功的美好祝愿。这样应该能满足用户的需求了。
</think>

上联:少男意气自凌云,在风风雨雨试身手
下联:少年志向须如水,润干功业总关情

赏析:这幅对联上联以“少男意气”起句,形容少年的雄心壮志;通过“凌云”、“在风风雨雨试身手”展现了他们不畏艰难、勇往直前的精神。下联则以“少年志向须如水”喻指少年的志向深沉持久,最后“润干功业总关情”表达了对少年未来事业的美好祝愿和期望。

Process finished with exit code 0
  1. 代码解释
  • 请求地址:http://localhost:11434/api/generate 是 Ollama 默认的生成 API 地址,你可以根据实际情况进行调整。
  • 请求数据:
    • model:指定要使用的模型名称,这里是 deepseek-r1:7b。
    • prompt:输入给模型的提示信息,即你想要询问的问题。
    • stream:设置是否使用流式响应。如果设置为 True,模型会逐步返回结果;如果设置为 False,则会等待模型生成完整的结果后一次性返回。
  • 请求头:设置 Content-Typeapplication/json,表示请求数据是 JSON 格式。
  • 发送请求:使用 requests.post 方法发送 POST 请求,并将响应结果解析为 JSON 格式。
  • 处理响应:打印模型的回复,如果请求或解析过程中出现错误,会捕获相应的异常并输出错误信息。
  1. 流式响应示例

2、编写 Python 代码( 流式 输出)

如果你希望使用流式响应,可以将 stream 参数设置为 True,并对响应进行逐行处理:

import requests
import json

url = "http://localhost:11434/api/generate"
data = {
    "model": "deepseek-r1:7b",
    "prompt": "请编写一个关于少年努力的对联",
    "stream": True
}
data_json = json.dumps(data)
headers = {
    "Content-Type": "application/json"
}

try:
    response = requests.post(url, headers=headers, data=data_json, stream=True)
    response.raise_for_status()
    for line in response.iter_lines():
        if line:
            result = json.loads(line)
            if 'response' in result:
                print(result["response"], end='', flush=True)
except requests.exceptions.RequestException as e:
    print(f"请求出错: {e}")
except (KeyError, json.JSONDecodeError):
    print("解析响应数据出错")
### 如何在Python调用本地DeepSeek 要在Python环境中成功调用本地安装的特定工具或模型,如DeepSeek,通常涉及几个关键步骤。虽然提供的参考资料未直接提及DeepSeek的具体操作方法[^1],可以基于常规实践提供指导。 #### 安装依赖库 确保所有必要的依赖项已正确安装。对于大多数机器学习框架和工具而言,这可能意味着要先设置好Python环境并安装对应的包。如果DeepSeek是一个通过pip可获取的软件,则可以通过如下命令来完成其安装: ```bash $ sudo pip3 install deepseek # 假设deepseek可通过pip获得 ``` #### 导入模块 一旦确认DeepSeek已经正确安装到当前使用Python版本下,下一步是在脚本里导入所需的类或函数。假设`deepseek`作为一个标准库被设计成可以直接引入的形式,那么可以在Python代码中这样写: ```python import deepseek as ds ``` #### 初始化对象与配置参数 根据官方文档说明初始化相应的实例,并传递任何必需的参数给构造器或其他设定接口。这部分具体实现取决于DeepSeek的设计模式以及API定义方式。 ```python detector = ds.DeepSeekDetector() detector.configure({'param': 'value'}) ``` #### 执行功能调用 最后一步就是利用创建好的对象执行具体的任务处理逻辑。这里同样需要参照实际应用场景下的例子来进行适配调整。 ```python result = detector.run(input_data) print(result) ``` 需要注意的是上述过程中的细节会因DeepSeek本身的特性而有所不同;因此强烈建议查阅该工具最新的官方指南以获取最准确的操作流程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值