什么是5.1声道?什么是7.1声道?8.2声道?基音?

目前,音响市场上出现了各种声道数的AV功放机,有5.1、6.1、7.1、8.2等。这些数字代表了什么?在此特简要介绍如下:

  5.1声道:即Dolby Digital5.1和DTS5.1两种数字多声道环绕声音频格式。它具有左右两路主声道、中置声道、左右两路环绕声道和一个重低音声道。前面5个声道都是全频域声道,重低音声道是一个不完全声道,只发120Hz以下的低音,称之为0.1声道,这样便构成了5.1声道格式。

  6.1声道:指Dolby DigitalEX和DTS ES两种数字多声道环绕声音频格式。它们都是一种扩展型环绕声音频格式即分别在Dolby Digital5.1和DTS5.1的基础上,为了让左右环绕声衔接得更好而增加一路后中间环绕声道,这便形成了6.1声道格式。

  7.1声道:指THX Surround EX系统。THX是Lucas公司对电影院的一种认证标准,不是音频格式。它严格地制订了电影院相关影音器材与环境的标准,只要符合THX标准且经过认证,就能有相当的水准。这样只要消费者选择具有THX认证的影院,就会有绝佳的影音享受。后来THX被移植到家庭影院,用于认证高品质的视听器材,并针对家庭环境的不同有着独特的要求。例如在5.1声道系统中,它要求的环绕声是双向发声的侧声道,而非单向发声的后声道,以达到电影院那种多只扬声器阵列排列的效果。可见THX并非Dolby Digital和DTS那样为一种音频格式,而是一种音频后处理模式,目的是获得最佳的视听享受。当6.1声道的Dolby Digital EX和DTS ES出来后,THX将其进一步演化成THX SurroundEX系统。为了兼容原双向发声的侧声道和再度加强环绕声效包围感,于是在原侧声道的基础上又增加了两只后声道,这就构成了7.1声道。值得注意的是,THX Surround EX是将Dolby Digital EX和DTS ES的6.1声道扩展成7.1声道,并不是一种音频录音格式,它只是将其环绕声效表现更佳而已。

  8.2声道:首次出现在YAMAHA的DSP-AX1 AV扩大机中,称之为10声道扩大机。它是为了加强环绕声场的效果,在Dolby Digital EX和DTS ES的6.1声道的基础上,增加了YAMAHA独家的前置环绕声道(喇叭箱放置在主声道的后上方),再增加一只重低音输出,后中间环绕声也由单路扩展成两路(与7.1声道的相似),这就构成了YAMAHA独家的8.2环绕声。

  不论是YAMAHA提倡的DSP模拟音场,还是SONY独家的Digital Cinema Sound,都是模拟电影院与音乐厅空间特性的环绕音效后处理方式。若要以感官的方式来比较两者的不同,多数人认为SONY的DCS较注重声音的包围感,而YAMAHA较注重开阔的空间感,两者可以说是各有所长。


一般的声音都是由发音体发出的一系列频率、振幅各不相同的振动复合而成的。这些振动中有一个频率最低的振动,由它发出的音就是基音(fundamental tone),其余为泛音。  

发音体整体振动产生的音(振动长度越大,频率越小),叫做基音,决定音高;  

发音体部分振动产生的音,叫做泛音,决定音色;  

基音和泛音结合一起而形成的音,叫做复合音,日常我们所听到的声音多为复合音。


基音周期检测是语音信号处理中的一个重要任务,用于确定语音信号中的基音频率。倒谱分析是一种常用的基音周期检测方法。以下是使用Python实现基于倒谱分析的基音周期检测算法的步骤: 1. **导入必要的库**: ```python import numpy as np import librosa import matplotlib.pyplot as plt ``` 2. **读取音频文件**: ```python audio_path = 'path_to_your_audio_file.wav' y, sr = librosa.load(audio_path, sr=None) ``` 3. **预处理音频信号**: ```python # 预加重 pre_emphasis = 0.97 y = np.append(y[0], y[1:] - pre_emphasis * y[:-1]) # 分帧 frame_size = 0.025 # 25ms frame_stride = 0.01 # 10ms frame_length, frame_step = int(round(frame_size * sr)), int(round(frame_stride * sr)) signal_length = len(y) num_frames = int(np.ceil(float(np.abs(signal_length - frame_length)) / frame_step)) pad_signal_length = num_frames * frame_step + frame_length z = np.zeros((pad_signal_length - signal_length)) pad_signal = np.append(y, z) indices = np.tile(np.arange(0, frame_length), (num_frames, 1)) + np.tile(np.arange(0, num_frames * frame_step, frame_step), (frame_length, 1)).T frames = pad_signal[indices.astype(np.int32, copy=False)] ``` 4. **加窗**: ```python frames *= np.hamming(frame_length) ``` 5. **计算倒谱**: ```python NFFT = 512 mag_frames = np.absolute(np.fft.rfft(frames, NFFT)) pow_frames = ((1.0 / NFFT) * (mag_frames ** 2)) # 计算对数功率谱 log_power_frames = 10 * np.log10(pow_frames + 1e-6) # 计算倒谱 ceps = np.fft.irfft(log_power_frames, NFFT) ``` 6. **基音周期检测**: ```python def find_pitch(ceps, sr): # 寻找倒谱的峰值 peak_indices = librosa.util.peak_pick(ceps, pre_max=3, post_max=3, pre_avg=3, post_avg=3, delta=0.5, wait=3) pitch_periods = [] for idx in peak_indices: if idx > 0: pitch_periods.append(idx / sr) return pitch_periods pitch_periods = find_pitch(ceps, sr) ``` 7. **可视化结果**: ```python plt.figure(figsize=(12, 6)) plt.plot(ceps) plt.title('Cepstrum') plt.xlabel('Sample') plt.ylabel('Amplitude') plt.grid(True) plt.show() ``` 通过上述步骤,你可以使用Python实现基于倒谱分析的基音周期检测算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值