怎么用牛顿法解平方根?

本文介绍了牛顿法求平方根的原理,强调了这种方法在处理抛物线函数时的有效性。通过整理两篇相关文章,阐述了牛顿迭代法的思想,并提供了计算机实现的步骤,包括设定初始值、构建切线并迭代更新,最终得到平方根的近似值。
摘要由CSDN通过智能技术生成

牛顿法求平方根的本质就是在抛物线上任取一点做切线,再把该切线与x轴的交点代入该抛物线方程又得到一根更逼近根的切线,如此迭代最终获得结果。但是牛顿法求函数根,需要该函数有二阶导数,否则牛顿法会在根附近抖动甚至越来越远。好在抛物线函数符合这个条件,所以可以安全使用牛顿迭代法。
以下是我找到的两篇讲解牛顿法的文章,第一篇通俗讲解了牛顿法的思想,第二篇推导了牛顿法求平方根的公式。都是很好的文章,但是都不完美,第一篇没讲怎么应用在求平方根上,第二篇排版混乱。下文对这两篇文章做了整理。
https://www.zhihu.com/question/20690553
http://www.voidcn.com/article/p-btcbtpcx-gk.html
(一)形象解释牛顿迭代法
请参考https://www.zhihu.com/question/20690553,标题为“如何通俗易懂地讲解牛顿迭代法求开方?”。此处截屏的目的是留档,避免链接丢失。

### 牛顿迭代计算平方根的时间复杂度分析 牛顿迭代是一种高效的数值方,用于方程的近似根。对于平方根问题,该算通过不断逼近真实值来获得更精确的结果。 #### 收敛性质 牛顿迭代具有二次收敛特性,在接近真值时能够快速减少误差。这意味着每次迭代后的精度会显著提高。当初始估计合理时,通常只需要几次迭代就能达到较高的精度[^1]。 #### 时间复杂度评估 时间复杂度主要取决于两个方面: - **单次迭代成本**:每轮迭代涉及加减乘除运算以及一次条件判断操作,这些基本算术运算是常量时间内完成的操作。 - **迭代次数**:理论上讲,如果起始点选择恰当,则经过有限步即可使结果满足给定精度要。具体来说,由于其具备二阶收敛速度,因此所需迭代次数相对较少[^2]。 综合考虑上述因素,牛顿迭代平方根的整体时间复杂度大约为 \(O(\log \epsilon^{-1})\) ,其中 \(\epsilon\) 表示所需的绝对或相对误差限。这表明随着期望精度增加(即 \(\epsilon\) 减小),额外消耗的时间增长较为缓慢[^3]。 ```java public class Main { /** 牛顿迭代: O(log(ε^-1)) */ public static int mySqrt(int num) { if (num == 0) { return 0; } // 确定迭代变量初始值 double x0 = num; double xn = (x0 + num / x0) / 2; // 设定终止条件以控制精度 while (Math.abs(xn - x0) > 0.01) { x0 = xn; // 迭代公式 xn = (x0 + num / x0) / 2; } return (int) xn; } } ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值