牛顿法求平方根的本质就是在抛物线上任取一点做切线,再把该切线与x轴的交点代入该抛物线方程又得到一根更逼近根的切线,如此迭代最终获得结果。但是牛顿法求函数根,需要该函数有二阶导数,否则牛顿法会在根附近抖动甚至越来越远。好在抛物线函数符合这个条件,所以可以安全使用牛顿迭代法。
以下是我找到的两篇讲解牛顿法的文章,第一篇通俗讲解了牛顿法的思想,第二篇推导了牛顿法求平方根的公式。都是很好的文章,但是都不完美,第一篇没讲怎么应用在求平方根上,第二篇排版混乱。下文对这两篇文章做了整理。
https://www.zhihu.com/question/20690553
http://www.voidcn.com/article/p-btcbtpcx-gk.html
(一)形象解释牛顿迭代法
请参考https://www.zhihu.com/question/20690553,标题为“如何通俗易懂地讲解牛顿迭代法求开方?”。此处截屏的目的是留档,避免链接丢失。






本文介绍了牛顿法求平方根的原理,强调了这种方法在处理抛物线函数时的有效性。通过整理两篇相关文章,阐述了牛顿迭代法的思想,并提供了计算机实现的步骤,包括设定初始值、构建切线并迭代更新,最终得到平方根的近似值。
最低0.47元/天 解锁文章
3906

被折叠的 条评论
为什么被折叠?



