Ubuntu16.04 python3.6 caffe安装教程

目前搜索到的caffe配置版本多数是2.7和3.5,关于python3.6的配置基本没有.所以我配置python3.6版本的caffe.

流程如下:

1,配置opencv 3.4.1

我们需要达到的目标是在python3中可以直接使用import cv2,其中关于编译这方面的资料很多.主要分为编译本体库,以及编译一个附加下载的库.但是在编译完成之后发现,依然无法成功import cv2.程序中的Import cv2提示no modules named cv2错误

解决方法:sudo pip3 install opencv-python.注意这里一定要用pip3,之前一直有资料说用pip,这样是无法成功的.使用pip3后,直接成功.

2,编译caffe

这里的大前提是已经编译配置好anaconda3,python的版本为3.6.python3.6的bin和lib文件全部在anaconda3中.

2.1 安装依赖

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler

sudo apt-get install --no-install-recommends libboost-all-dev

sudo apt-get install libatlas-base-dev

sudo apt-get install libhdf5-serial-dev

sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

然后把CAFFE的源代码下载下来: git clone https://github.com/BVLC/caffe.git

下载完成之后,进入CAFFE文件夹, 进入里面的PYTHON文件夹,然后输入

for req in $(cat requirements.txt); do pip3 install $req; done

(PIP如果没有安装得先安装一下:sudo apt install python-pip)

注意的地方是:pip3安装的,第二点是sudo apt-get install --no-install-recommends libboost-all-dev这一条安装编译的并没有关于python3.6版本的libboost,我们需要重新编译.否则caffe无法调用成功.(怎么编译后面说)

2.2 安装caffe

到CAFFE文件夹, 使用模板写个Makefile.config. 具体就是先复制一下模板, 再改一些内容(我喜欢用EMACS).

cp Makefile.config.example Makefile.config

-因为CPU MODE, 所以在CPU_ONLY := 1前面的#要去掉.

-两个路径要改成这样:(添加后面的两个hdf5的路径, 否则编译时报hdf5错误)

# Whatever else you find you need goes here.

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include/usr/include/hdf5/serial

LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib/usr/lib/x86_64-linux-gnu/hdf5/serial

一份完整的python3.6配置文件.(这里黑色加粗字体的位置就是我们要做修改注意的地方)

## Refer to http://caffe.berkeleyvision.org/installation.html

# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).

# USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).

CPU_ONLY := 1#(因为我们要配置cpu版本的,所以这里把引号去掉)

# uncomment to disable IO dependencies and corresponding data layers

# USE_OPENCV := 0

# USE_LEVELDB := 0

# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)

# You should not set this flag if you will be reading LMDBs with any

# possibility of simultaneous read and write

# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3

OPENCV_VERSION := 3#(我们的opencv是3版本的,所以这里我们把引号去掉,之前opencv3已经安装并编译成功)

# To customize your choice of compiler, uncomment and set the following.

# N.B. the default for Linux is g++ and the default for OSX is clang++

# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.

CUDA_DIR := /usr/local/cuda

# On Ubuntu 14.04, if cuda tools are installed via

# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:

# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.

# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.

# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.

# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.

CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \

-gencode arch=compute_20,code=sm_21 \

-gencode arch=compute_30,code=sm_30 \

-gencode arch=compute_35,code=sm_35 \

-gencode arch=compute_50,code=sm_50 \

-gencode arch=compute_52,code=sm_52 \

-gencode arch=compute_60,code=sm_60 \

-gencode arch=compute_61,code=sm_61 \

-gencode arch=compute_61,code=compute_61

# BLAS choice:

# atlas for ATLAS (default)

# mkl for MKL

# open for OpenBlas

BLAS := atlas

# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.

# Leave commented to accept the defaults for your choice of BLAS

# (which should work)!

# BLAS_INCLUDE := /path/to/your/blas

# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path

# BLAS_INCLUDE := $(shell brew --prefix openblas)/include

# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.

# MATLAB directory should contain the mex binary in /bin.

# MATLAB_DIR := /usr/local

# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.

# We need to be able to find Python.h and numpy/arrayobject.h.

#PYTHON_INCLUDE := /usr/include/python2.7 \

# /usr/lib/python2.7/dist-packages/numpy/core/include

# Anaconda Python distribution is quite popular. Include path:

# Verify anaconda location, sometimes it's in root.

ANACONDA_HOME := $(HOME)/anaconda3#(我们使用的python3.6版本在anaconda3中,所以这里要取消注释,修改为你的根目录位置)

PYTHON_INCLUDE := $(ANACONDA_HOME)/include \

$(ANACONDA_HOME)/include/python3.6m \#(这两个目录要看具体anaconda3中目录的名字,我做了对应修改)

$(ANACONDA_HOME)/lib/python3.6/site-packages/numpy/core/include

# Uncomment to use Python 3 (default is Python 2)

  PYTHON_LIBRARIES := boost_python3 python3.6m#(这里我取消了注释,并且修改了内容,重新编译boost python3,后面讲)

# PYTHON_INCLUDE := /usr/include/python3.5m \

#                /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.

#PYTHON_LIB := /usr/lib#(把这里注释掉)

PYTHON_LIB := $(ANACONDA_HOME)/lib#(修改为我这里的位置)

# Homebrew installs numpy in a non standard path (keg only)

# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include

# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)

# WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include  /usr/include/hdf5/serial

LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies

# INCLUDE_DIRS += $(shell brew --prefix)/include

# LIBRARY_DIRS += $(shell brew --prefix)/lib

# NCCL acceleration switch (uncomment to build with NCCL)

# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)

# USE_NCCL := 1

# Uncomment to use `pkg-config` to specify OpenCV library paths.

# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)

# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`

BUILD_DIR := build

DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171

# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.

TEST_GPUID := 0

# enable pretty build (comment to see full commands)

Q ?= @

LINKFLAGS := -Wl,-rpath,$(HOME)/anaconda3/lib#(这里是由于会出现一个关于png的错误,我后面讲)

按照流程接下来的配置应该是:

准备好了.

make pycaffe -j 4

另外, 这个make默认是用CPU单核运算,如果想要快一点, 比如我想使用四核, 在make后面加上-j4标签.

如果上面4行某一行报错之后想要重试,建议先make clean再重新开始.

如果这里出现问题,马上 make clean.

配置好了之后 ,make all 

全部成功后才算是成功。

2.3 配置环境变量

去到CAFFE文件夹里面的python文件夹, 把当前路径记录下来(pwd). 然后输入以下命令(把记下的路径放在相应地方)

export PYTHONPATH=/path/to/caffe/python:$PYTHONPATH

2.4 大功告成

命令行中输入 python, 然后 import caffe ,基本是错的。接下来讲在编译caffe以及import caffe中出现的各种问题。

3.问题以及解决

3.1 编译时候,cannot find -lboost_python3, python3.6m

原因是这一行中,PYTHON_LIBRARIES := boost_python3 python3.6m,首先我们boost并没有编译3.6版本,其次python3.6m这个link不在 /usr/lib 。

1),sudo ln -s /home/horsetif/anaconda3/bin/python3  /usr/lib/python3.6m(这里是建立一个软链接,把我本地目录下的python3.6加到usr/lib/中去。

2),编译3.6版本的libboost_python3.so

首先去/usr/lib/x86_64-linux-gnu目录下查看是否有python3版本的libboost,如果有类似libboost_python35.so但是没有libboost_python3.so则需要手动建立连接。

方法为:

sudo ln-slibboost_python-py35.so libboost_python3.so

这个方法只是针对与3.5版本,现在我们重新编译,然后把编译好的结果的软链接加到/usr/lib/x86_64-linux-gnu这个目录里面。

1.首先下载安装包,然后解压, 切换目录

wget -O boost_1_67_0.tar.gz http://sourceforge.net/projects/boost/files/boost/1.67.0/boost_1_67_0.tar.gz/download  

tar xzvf boost_1_67_0.tar.gz      

cd boost_1_67_0/  

安装包也可以在http://www.boost.org/users/history/version_1_67_0.html下载

2.安装附加依赖库

sudo apt-get update  

sudo apt-get install build-essential g++ python-dev autotools-dev libicu-dev build-essential libbz2-dev libboost-all-dev 

 

linux系统自带python2.7,boost编译后会生成libboost_python27.so,但有些应用需要libboost_python3,下面我们就来编译。

进入boost源文件目录boost_1_67_0,配置仅仅编译python,python路径指向anaconda3中的python3.6。

./bootstrap --with-libraries=python --with-toolset=gcc  

./b2 --with-python include="/home/horsetif/anaconda3/include/python3.6m/"  

sudo ./b2 install  

编译安装成功后,/usr/local/lib下会有libboost_python36.so和libboost_python36.a,有些应用link时需要的是libboost_python3.so或者libboost_python3.a,我们建个软链:

cd /usr/local/lib  

sudo ln -s libboost_python-py36.so libboost_python3.so  

sudo ln -s libboost_python-py36.a libboost_python3.a  

这时,我们要把/usr/local/lib 中,相关文件,建立相对于名称的软链接到 /usr/lib/x86_64-linux-gnu中。

sudo cp /usr/local/lib/libboost_python36.a  /usr/lib/x86_64-linux-gnu/libboost_python_python36.a

sudo cp /usr/local/lib/libboost_python36.so.1.67.0  /usr/lib/x86_64-linux-gnu/libboost_python3.so

3.2 多个opencv问题

错误:make pycaffe可以通过,但是make all时出现错误,具体错误我没有记录,但是好像是因为系统装了多个opencv的原因,不管怎么说,至少可以在python环境下import caffe了

make all时出现的错误:

.build_release/lib/libcaffe.so: undefined reference to `cv::imread(cv::String const&, int)'

.build_release/lib/libcaffe.so: undefined reference to `cv::imencode(cv::String const&, cv::_InputArray const&, std::vector >&, std::vector > const&)'

.build_release/lib/libcaffe.so: undefined reference to `cv::imdecode(cv::_InputArray const&, int)'

collect2: error: ld returned 1 exit status

Makefile:625: recipe for target '.build_release/tools/upgrade_net_proto_text.bin' failed

make: *** [.build_release/tools/upgrade_net_proto_text.bin] Error 1

make: *** Waiting for unfinished jobs....

解决办法:也是,的确在这之前我分别在python 3.5和python 2.7下面装了opencv,而且该教程前面又装了libopencv-dev,所以我就怀疑是这个,但是我尝试着卸载了opencv还是import出现同样的错误,最后不断找解决方案,也尝试了他们的各种解决方法,都不知道make clean然后又make all了多少次,还是不管用。最后在网站https://github.com/BVLC/caffe/issues/2348#issuecomment-95156848看到有人说”Uncomment

if you're using OpenCV 3”于是我在配置文件中去掉 ”OPENCV_ VERSION :=3“的注释,我又make clean,接着make all,奇迹终于出现了,上面的错误消失了,居然make all成功了。

3.3 matplotlib 问题

3、错误:现在可以import caffe了,但是又出现了以下错误:

>>> import caffe

Traceback (most recent call last):

File "", line 1, in

File "/home/.../Downloads/caffe-master/python/caffe/__init__.py", line 1, in

from .pycaffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, RMSPropSolver, AdaDeltaSolver, AdamSolver, NCCL, Timer

File "/home/.../Downloads/caffe-master/python/caffe/pycaffe.py", line 15, in

import caffe.io

File "/home/..../Downloads/caffe-master/python/caffe/io.py", line 2, in

import skimage.io

File "/home/.../Downloads/yes/lib/python3.5/site-packages/skimage/io/__init__.py", line 15, in

reset_plugins()

File "/home/.../Downloads/yes/lib/python3.5/site-packages/skimage/io/manage_plugins.py", line 93, in reset_plugins

_load_preferred_plugins()

File "/home/.../Downloads/yes/lib/python3.5/site-packages/skimage/io/manage_plugins.py", line 73, in _load_preferred_plugins

_set_plugin(p_type, preferred_plugins['all'])

File "/home/.../Downloads/yes/lib/python3.5/site-packages/skimage/io/manage_plugins.py", line 85, in _set_plugin

use_plugin(plugin, kind=plugin_type)

File "/home/.../Downloads/yes/lib/python3.5/site-packages/skimage/io/manage_plugins.py", line 255, in use_plugin

_load(name)

File "/home/.../Downloads/yes/lib/python3.5/site-packages/skimage/io/manage_plugins.py", line 299, in _load

fromlist=[modname])

File "/home/.../Downloads/yes/lib/python3.5/site-packages/skimage/io/_plugins/matplotlib_plugin.py", line 3, in

import matplotlib.pyplot as plt

File "/home/.../Downloads/yes/lib/python3.5/site-packages/matplotlib/pyplot.py", line 36, in

from matplotlib.figure import Figure, figaspect

File "/home/.../Downloads/yes/lib/python3.5/site-packages/matplotlib/figure.py", line 40, in

from matplotlib.axes import Axes, SubplotBase, subplot_class_factory

File "/home/..../Downloads/yes/lib/python3.5/site-packages/matplotlib/axes/__init__.py", line 4, in

from ._subplots import *

File "/home/.../Downloads/yes/lib/python3.5/site-packages/matplotlib/axes/_subplots.py", line 10, in

from matplotlib.axes._axes import Axes

File "/home/.../Downloads/yes/lib/python3.5/site-packages/matplotlib/axes/_axes.py", line 23, in

import matplotlib.dates as _  # <-registers a date unit converter

File "/home/.../Downloads/yes/lib/python3.5/site-packages/matplotlib/dates.py", line 126, in

from dateutil.rrule import (rrule, MO, TU, WE, TH, FR, SA, SU, YEARLY, MONTHLY, WEEKLY, DAILY, HOURLY, MINUTELY, SECONDLY)

File "/home/.../Downloads/yes/lib/python3.5/site-packages/dateutil/rrule.py", line 55

raise ValueError, "Can't create weekday with n == 0"

^

SyntaxError: invalid syntax

错误解决办法:从上面可以看出也就是在  import matplotlib.pyplot as plt 时出现错误,百度了以下,尝试了几种解决方案,原来是matplotlib版本太低了,需要升级,于是我pip3 install matplotlib --upgrade 了以下,果然解决了,但是又出现了下面的问题。

3.4 numpy 问题

错误:Intel MKL FATAL ERROR: Cannot load libmkl_avx.so or libmkl_def.so.

Python 3.5.2 |Continuum Analytics, Inc.| (default, Jul  2 2016, 17:53:06)

[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import caffe

Intel MKL FATAL ERROR: Cannot load libmkl_avx.so or libmkl_def.so.

解决方案:继续百度了下,哈哈,原来是因为numpy版本过低导致,于是我 conda update numpy ,哈哈又成功了。。所以,我的anaconda里边的包必须得升级啊,里边的包都还是安装anaconda时系统自带的,太老了。

3.5 错误信息

//home/idc/anaconda3/lib/libpng16.so.16: undefined reference to `inflateValidate@ZLIB_1.2.9'

后面还有几行,主要是这个。

我的解决方法是在Makefile.config加入下列信息:

LINKFLAGS := -Wl,-rpath,$(HOME)/anaconda3/lib

3.6 错误信息

可能会出现下面的错误:

Failed to include caffe_pb2, things might go wrong!

Traceback (most recent call last):

  File "", line 1, in

  File "/home/david/download/caffe-master/python/caffe/__init__.py", line 4, in

    from .proto.caffe_pb2 import TRAIN, TEST

  File "/home/david/download/caffe-master/python/caffe/proto/caffe_pb2.py", line 7, in

    from google.protobuf import reflection as _reflection

  File "/home/david/opt/anaconda3/lib/python3.5/site-packages/google/protobuf/reflection.py", line 68, in

    from google.protobuf.internal import python_message

  File "/home/david/opt/anaconda3/lib/python3.5/site-packages/google/protobuf/internal/python_message.py", line 848

    except struct.error, e:

                      ^

SyntaxError: invalid syntax

这是因为 protobuf 不支持 python3,解决方案是安装pip install protobuf-py3, 一个 python3.x 版本的替代包。‘’

 

4.错误代码总汇:

opencv 配置问题

make all

.build_release/lib/libcaffe.so: undefined reference to `cv::imencode(cv::String const&, cv::_InputArray const&, std::vector>&, std::vector > const&)'

.build_release/lib/libcaffe.so: undefined reference to `cv::imdecode(cv::_InputArray const&, int)'

collect2: error: ld returned 1 exit status

Makefile:625: recipe for target '.build_release/tools/compute_image_mean.bin' failed

make: *** [.build_release/tools/compute_image_mean.bin] Error 1

 

 

python版本与编译caffe版本问题

from ._caffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, \

ImportError: /home/horsetif/Software/caffe/python/caffe/../../build/lib/libcaffe.so.1.0.0: undefined symbol: _ZN2cv6imreadERKNS_6StringEi

 

File "/home/horsetif/Software/caffe/python/caffe/pycaffe.py", line 13, in from ._caffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, \

ImportError: dynamic module does not define module export function (PyInit__caffe)

 

 

boost 配置问题

CXX/LD -o python/caffe/_caffe.so python/caffe/_caffe.cpp

/usr/bin/ld: cannot find -lboost_python3

collect2: error: ld returned 1 exit status

Makefile:507: recipe for target 'python/caffe/_caffe.so' failed

make: *** [python/caffe/_caffe.so] Error 1

 

boost修改好了之后没有放对位置

File "/home/horsetif/Software/caffe/python/caffe/pycaffe.py", line 13, in from ._caffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, \

ImportError: libboost_python36.so.1.67.0: cannot open shared object file: No such file or directory

 

matplotlib 问题

from matplotlib.axes._axes import Axes File "/home/horsetif/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py", line 23, inimport matplotlib.dates as _ # <-registers a date unit converter File "/home/horsetif/anaconda3/lib/python3.6/site-packages/matplotlib/dates.py", line 148, in from dateutil.rrule import (rrule, MO, TU, WE, TH, FR, SA, SU, YEARLY,

  File "/home/horsetif/anaconda3/lib/python3.6/site-packages/dateutil/rrule.py", line 55

    raise ValueError, "Can't create weekday with n == 0"

                    ^

SyntaxError: invalid syntax



作者:horsetif
链接:出处来自为,简书https://www.jianshu.com/p/5afdb561ce94
來源:简书
 

### 回答1: 在 Ubuntu 16.04 上安装 Python 3.6 的方法如下: 1. 打开终端(Ctrl + Alt + T)。 2. 更新软件包列表:sudo apt-get update 3. 安装 Python 3.6 的依赖库:sudo apt-get install -y build-essential checkinstall 4. 下载 Python 3.6 源码:wget https://www.python.org/ftp/python/3.6.12/Python-3.6.12.tgz 5. 解压缩 Python 3.6 源码:tar xzf Python-3.6.12.tgz 6. 进入解压后的文件夹:cd Python-3.6.12 7. 编译安装 Python 3.6:./configure && make && sudo make install 8. 检查 Python 3.6 版本:python3.6 -V 请注意,在安装 Python 3.6 后,系统默认的 Python 版本仍然是 2.x,如果要使用 Python 3.6,需要在命令前加上 python3.6,例如 python3.6 -V 如果想要在系统默认使用 python3.6,可以执行命令: sudo update-alternatives --install /usr/bin/python python /usr/local/bin/python3.6 1 然后执行: sudo update-alternatives --config python 选择 python3.6 ### 回答2: Ubuntu16.04自带的python版本是python2.7,如果你想安装python3.6,可以按照以下步骤进行操作: 1.更新系统 在终端输入以下命令: sudo apt-get update sudo apt-get upgrade 2.安装依赖 在终端输入以下命令安装依赖: sudo apt-get install build-essential checkinstall sudo apt-get install libreadline-gplv2-dev libncursesw5-dev libssl-dev libsqlite3-dev tk-dev libgdbm-dev libc6-dev libbz2-dev 3.下载python3.6安装包 下载安装包到本地,可以在https://www.python.org/downloads/release/python-360/下载最新版本python3.6。 4.编译安装python3.6 在终端进入python3.6安装包所在目录,执行以下命令: tar -xvf Python-3.6.0.tgz # 解压安装包 cd Python-3.6.0 # 进入解压后的目录 ./configure make sudo make install 5.设置默认python版本 在终端输入以下命令设置默认python版本: sudo update-alternatives --install /usr/bin/python python /usr/local/bin/python3.6 1 sudo update-alternatives --config python 出现选项后,输入“1”即可选择python3.6作为默认版本。 6.测试python版本 在终端输入以下命令: python -v 如果显示的版本是3.6,说明安装成功。 以上就是在Ubuntu16.04上安装python3.6的步骤,如果你遇到了问题,可以在社区寻求帮助。 ### 回答3: Ubuntu 16.04 默认安装了 Python 2.7.x,但是 Python 3.x 需要手动安装。Python 3.6Python 3 的最新版本,在 Ubuntu 16.04 上安装 Python 3.6 的步骤如下: 1. 更新系统软件包列表 在终端中输入以下命令以更新系统中的软件包列表: sudo apt-get update 2. 安装编译 Python 3.6 所需的依赖 编译 Python 3.6 所需的依赖可以通过以下命令一次性安装: sudo apt-get install build-essential checkinstall sudo apt-get install libreadline-gplv2-dev libncursesw5-dev libssl-dev libsqlite3-dev tk-dev libgdbm-dev libc6-dev libbz2-dev 3. 获取 Python 3.6 的源代码 在终端中输入以下命令以下载 Python 3.6 的源代码: wget https://www.python.org/ftp/python/3.6.10/Python-3.6.10.tgz 4. 解压 Python 3.6 的源代码 在终端中输入以下命令以将下载下来的 Python 3.6 源代码解压: tar xzf Python-3.6.10.tgz 5. 编译 Python 3.6 进入 Python 3.6 的源代码目录,运行以下命令: cd Python-3.6.10 ./configure --enable-optimizations make altinstall 其中,--enable-optimizations 表示开启编译优化,make altinstall 表示将 Python 3.6 安装到 /usr/local/bin 目录下,并同时保留系统默认的 Python 2.7.x 版本。 6. 验证 Python 3.6 安装成功 在终端中输入以下命令: python3.6 如果出现 Python 3.6.x 的版本信息,则说明 Python 3.6 安装成功。 7. 设置 Python 3.6 为系统默认版本 如果想要将 Python 3.6 设置为系统默认版本,则需要编辑系统环境变量 /etc/profile 文件,在文件末尾添加以下代码: export PATH=/usr/local/bin:$PATH 然后在终端中输入以下命令,使配置的环境变量生效: source /etc/profile 至此,Ubuntu 16.04 上安装 Python 3.6 的步骤就完成了。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值