hdu 1907

取火柴的游戏
题目1:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根,
可将一堆全取走,但不可不取,最后取完者为胜,求必胜的方法。
题目2:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根,
可将一堆全取走,但不可不取,最后取完者为负,求必胜的方法。
嘿嘿,这个游戏我早就见识过了。小时候用珠算玩这个游戏:第一档拨一个,第二档拨两个,依次直到第五档拨五个。然后两个人就轮流再把棋子拨下来,谁要是最后一个拨谁就赢。有一次暑假看见两个小孩子在玩这个游戏,我就在想有没有一个定论呢。下面就来试着证明一下吧
先解决第一个问题吧。
定义:若所有火柴数异或为0,则该状态被称为利他态,用字母T表示;否则,
为利己态,用S表示。
[定理1]:对于任何一个S态,总能从一堆火柴中取出若干个使之成为T态。
证明:
    若有n堆火柴,每堆火柴有A(i)根火柴数,那么既然现在处于S态,
      c = A(1) xor A(2) xor … xor A(n) > 0;
    把c表示成二进制,记它的二进制数的最高位为第p位,则必然存在一个A(t),它二进制的第p位也是1。(否则,若所有的A(i)的第p位都是0,这与c的第p位就也为0矛盾)。
    那么我们把x = A(t) xor c,则得到x < A(t).这是因为既然A(t)的第p位与c的第p位同为1,那么x的第p位变为0,而高于p的位并没有改变。所以x < A(t).而
    A(1) xor A(2) xor … xor x xor … xor A(n)
  = A(1) xor A(2) xor … xor A(t) xor c xor … xor A(n)
  = A(1) xor A(2) xor… xor A(n) xor A(1) xor A(2) xor … xor A(n)
  = 0
这就是说从A(t)堆中取出 A(t) – x 根火柴后状态就会从S态变为T态。证毕
[定理2]:T态,取任何一堆的若干根,都将成为S态。
证明:用反证法试试。
      若
      c = A(1) xor A(2) xor … xor A(i) xor … xor A(n) = 0;
      c’ = A(1) xor A(2) xor … xor A(i’) xor c xor … xor A(n) = 0;
      则有
c xor c’ = A(1) xor A(2) xor … xor A(i) xor … xor A(n) xor A(1) xor A(2) xor … xor A(i’) xor c xor … xor A(n) = A(i) xor A(i’) =0
      进而推出A(i) = A(i’),这与已知矛盾。所以命题得证。
[定理 3]:S态,只要方法正确,必赢。
  最终胜利即由S态转变为T态,任何一个S态,只要把它变为T态,(由定理1,可以把它变成T态。)对方只能把T态转变为S态(定理2)。这样,所有S态向T态的转变都可以有己方控制,对方只能被动地实现由T态转变为S态。故S态必赢。
[定理4]:T态,只要对方法正确,必败。
  由定理3易得。
接着来解决第二个问题。
定义:若一堆中仅有1根火柴,则被称为孤单堆。若大于1根,则称为充裕堆。
定义:T态中,若充裕堆的堆数大于等于2,则称为完全利他态,用T2表示;若充裕堆的堆数等于0,则称为部分利他态,用T0表示。

孤单堆的根数异或只会影响二进制的最后一位,但充裕堆会影响高位(非最后一位)。一个充裕堆,高位必有一位不为0,则所有根数异或不为0。故不会是T态。
[定理5]:S0态,即仅有奇数个孤单堆,必败。T0态必胜。
证明:
S0态,其实就是每次只能取一根。每次第奇数根都由己取,第偶数根都由对
方取,所以最后一根必己取。败。同理,  T0态必胜#
[定理6]:S1态,只要方法正确,必胜。
证明:
若此时孤单堆堆数为奇数,把充裕堆取完;否则,取成一根。这样,就变成奇数个孤单堆,由对方取。由定理5,对方必输。己必胜。  #
[定理7]:S2态不可转一次变为T0态。
证明:
充裕堆数不可能一次由2变为0。得证。  #

[定理8]:S2态可一次转变为T2态。
证明:
由定理1,S态可转变为T态,态可一次转变为T态,又由定理6,S2态不可转一次变为T0态,所以转变的T态为T2态。  #
[定理9]:T2态,只能转变为S2态或S1态。
证明:
由定理2,T态必然变为S态。由于充裕堆数不可能一次由2变为0,所以此时的S态不可能为S0态。命题得证。
[定理10]:S2态,只要方法正确,必胜.
证明:
方法如下:
      1)  S2态,就把它变为T2态。(由定理8)
      2)  对方只能T2转变成S2态或S1态(定理9)
    若转变为S2,  转向1)
    若转变为S1,  这己必胜。(定理5)
[定理11]:T2态必输。
证明:同10。
综上所述,必输态有:  T2,S0
          必胜态:    S2,S1,T0.

#include <stdio.h>
int main(int argc, char *argv[])
{
	int T,N,a[5000];
	int sum1;//充裕堆的个数
	int sum2;//孤单堆的个数 
	int ans;//异或 
	scanf("%d",&T);
	while(T--)
	{//这三个数字忘记赋0 ,错了三次 
		sum1=0;
		sum2=0;
		ans=0; 
		scanf("%d",&N);
		for (int i=0;i<N;i++)
		{
		   scanf("%d",&a[i]);
		   if(a[i]>=2) sum1++;
		   else sum2++;	
           ans^=a[i];
		}
		if((ans!=0 && sum1!=0) || (ans==0) && sum1==0)
		   printf("John\n");
		if((ans==0 && sum1>=2) || (ans!=0 && sum2%2!=0 && sum1==0)) printf("Brother\n");   
	}                                                        //充裕堆=0忘记了 
	return 0;                 
}


 

 

 


#include <stdio.h>
int main(int argc, char *argv[])
{
	int T,N,a[5000];
	int sum1;//充裕堆的个数
	int sum2;//孤单堆的个数 
	int ans;//异或 
	scanf("%d",&T);
	while(T--)
	{//这三个数字忘记赋0 ,错了三次 
		sum1=0;
		sum2=0;
		ans=0; 
		scanf("%d",&N);
		for (int i=0;i<N;i++)
		{
		   scanf("%d",&a[i]);
		   if(a[i]>=2) sum1++;
		   else sum2++;	
           ans^=a[i];
		}
		if((ans!=0 && sum1!=0) || (ans==0) && sum1==0)
		   printf("John\n");
		if((ans==0 && sum1>=2) || (ans!=0 && sum2%2!=0 && sum1==0)) printf("Brother\n");   
	}                                                        //充裕堆=0忘记了 
	return 0;                 
}


 

 

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页