R语言分布滞后非线性模型(DLNM)研究发病率,死亡率和空气污染示例

这篇博客介绍了如何使用R语言的分布滞后非线性模型(DLNM)来研究暴露-滞后-反应关联,特别关注空气污染与发病率和死亡率之间的关系。文中提供数据集和代码示例,涵盖了数据、DLNM方法、统计模型、解释和绘图等关键步骤,展示了DLNM在时间序列分析之外的应用。
摘要由CSDN通过智能技术生成

全文下载链接:http://tecdat.cn/?p=21317

本文提供了运行分布滞后非线性模型的示例,同时描述了预测变量和结果之间的非线性和滞后效应,这种相互关系被定义为暴露-滞后-反应关联点击文末“阅读原文”获取完整代码数据

相关视频

数据

数据集包含1987-2000年期间每日死亡率(CVD、呼吸道),天气(温度,相对湿度)和污染数据(PM10和臭氧)。数据是由健康影响研究所赞助的《国家发病率,死亡率和空气污染研究》(NMMAPS)的一部分[Samet et al.,2000a,b]。

该研究是关于随时间变化的职业暴露与癌症之间的关系。该研究包括250个风险集,每个风险集都有一个病例和一个对照,并与年龄相匹配。暴露数据以15岁至65岁之间的5岁年龄区间收集。

数据集药物包含模拟数据,来自一个假设的随机对照试验,对随时间变化剂量的药物的影响。该研究包括200名随机受试者,每人每天接受药物剂量,持续28天,每周都有变化。每隔7天报告一次。

DLNM方法

在这里,我提供了一个简短的摘要来介绍概念和定义。

暴露-滞后-反应关联

DLNM的建模类用于描述关联,在该关联中,暴露和结果之间的依赖关系会在时间上滞后。可以使用两个不同且互补的观点来描述此过程。我们可以说,在时间t处的暴露事件确定了在时间t +l处的未来风险。使用后向视角,时间t的风险由过去在时间t-l经历的一系列风险确定。这里的l是滞后,表示暴露和测得的结果之间的滞后。

DLNM统计模型

DLNM类提供了一个概念和分析框架,用于描述和估计暴露-滞后-反应关联。DLNM的统计发展基于以下选择:DLNM类为描述和估计暴露-滞后-反应关联提供了一个概念和分析框架。DLNM的统计发展基于该选择。

暴露-滞后-反应关联的一个简单情况是,预测变量空间中的关系(即暴露-滞后关系)是线性的。可以通过DLM对这种类型的关系进行建模。在这种情况下,关联仅取决于滞后反应函数,该函数模拟线性风险如何随滞后变化。滞后反应函数的不同选择(样条曲线,多项式,层次,阈值等)导致指定了不同的DLM,并暗示了滞后反应关系的替代假设。

DLNM解释

DLNM的结果可以通过使用3-D绘图提供沿两个维度变化的关联,通过为每个滞后和预测变量的拟合值构建预测网格来解释。

第一是与特定暴露值相关联的滞后反应曲线,定义为预测变量特定性关联。这被解释为与时间t风险相关的时间t +l的风险贡献序列。

第二是与特定滞后值相关联的暴露-反应曲线,该特定滞后值定义为滞后特定关联。这被解释为与在时间t处发生的暴露值相关联的在时间t +l处的暴露-反应关系。

第三个也是最重要的是与在考虑的滞后期内经历的整个暴露历史相关的暴露反应曲线,定义为总体累积关联。使用正向视角,这被解释为表示时间t发生的给定暴露期间[t,t+L]期间经历的净风险的暴露反应关系。

时间序列之外的应用

分布滞后模型首先是在很久以前的计量经济时间序列分析中提出的[Almon,1965],然后在环境流行病学Schwartz [2000]的时间序列数据中重新提出。DLNM的扩展是由Armstrong [2006]构想的。Gasparrini等人对时间序列数据的建模框架进行了重新评估。[2010]。有趣的是,已经在不同的研究领域中提出了这种暴露-滞后-反应关联的模型。一般的想法是通过特定函数加权过去的暴露,这些函数的参数由数据估算。在癌症流行病学[Hauptmann等,2000;Langholz等,1999;Richardson,2009;Thomas,1983;Vacek,1997]和药物流行病学[Abrahamowicz等]中,说明了类似于DLM的线性-暴露-反应关系模型。

基本函数

指定标准暴露反应和滞后反应关系的基本函数,例如多项式,分层或阈值函数。例如,样条线由推荐的包样条线中包含的函数ns()和bs()指定。多项式是通过函数poly()获得的。这是一个简单向量的转换示例:

poly(1:5,degree=3)
1 2 3
[1,] 0.2 0.04 0.008
[2,] 0.4 0.16 0.064
[3,] 0.6 0.36 0.216
[4,] 0.8 0.64 0.512
[5,] 1.0
  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值