R语言用决策树的酒店收入和产量预测可视化研究

文章讲述了如何利用R语言中的决策树模型对酒店的收入和产量进行预测,通过分析历史数据和调整预订渠道价格来最大化收益。模型预测结果显示预测效果良好,为酒店投资者和管理者提供决策依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


全文链接:https://tecdat.cn/?p=35130

现代社会经济的发展,促进了酒店业的投资热潮, 投资者投资一个酒店,必须在投资前对若干经营数据进行科学预测与分析,对酒店可能形成的收入成本水平进行估算,从而对投资的风险进行有效预测点击文末“阅读原文”获取完整代码数据)。

相关视频

酒店管理者在借鉴西方发达国家经验数据的基础上,在星级酒店的具体运营过程中,通过反复验证和探讨,推演出了一批符合中国国情的经验数据,在此以较为常用的计算模块对酒店的运营数据模型进行阐述,我们根据提供的数据,帮助客户建立酒店产量预测模型(收入预测模型),通过此模型能识别出哪些酒店可以通过调整三个预订渠道的价格(b渠道卖价, c渠道卖价, e渠道卖价)使得单酒店在三个预订渠道的总产量(或总收入)最大。

1)     相关数据字段如下:

b1ff20ab50c6d6b7e3d0515601888dee.png

方法

决策树是一个预测模型;它代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。 数据挖掘中决策树是一种经常要用到的技术,可以用于分析数据,同样也可以用来作预测。

5f3451e7be6dba80db1a99c208d27455.png

建模分析

首先我们读取2016-01-01至2016-03-30的历史数据作为训练数据,我们可以对部分训练数据进行查看

43b9faccc5e34d58326d4268a4e6364a.png

然后我们读取测试数据并且以2016-04-9至2016-04-15的数据为测试集评测预测的准确度。
同样的,我们可以查看测试数据:

a780ecc97e67459606b35d1f48642a61.png

然后我们计算单酒店在三个预订渠道的总产量(或总收入)

data$income=data$b_price_after_app +data$c_price_after_app +data$e_price_after_app  
test$income=test$b_price_after_app +test$c_price_after_app +test$e_price_after_app

在简单的进行数据处理后,我们对数据建立决策树。
并且得到以下的决策树模型:

0b9fa7f733299606fe8c0b334e2adbea.png

从模型结果来看,这个决策树一共有四个分支。然后我们要找出产量排名前四分之一酒店,因此对每个酒店的产量进行绘制。

ccc5c2e080c739a7e1ecf0ee471b87f1.png

然后使用刚才得到的决策树模型对他们进行预测,并对每家酒店的间夜预测值(或收入)与实际值的对比结果:

然后绘制实际值和预测值的比较图。

dfbda5a49baec49fe54c9bccb702bf4c.png

从对比图来看,我们可以发现,红色的代表预测的数据,而黑色的线代表着准确度的衡量直线,当预测点越靠近准确度线,那么该模型的预测效果越好,从该图形来看,红色的点,分布在黑色的直线周围,说明该模型的预测结果较好。


点击标题查阅往期内容

66b13876fa20c63343c419b968504ed4.png

R语言航班延误影响预测分析:lasso、决策树、朴素贝叶斯、QDA、LDA、缺失值处理、k折交叉验证

outside_default.png

左右滑动查看更多

outside_default.png

01

8620cfe8d3c2d2d08e766306b2eee410.png

02

a272bc90b8aca9b006e996c78b3df7b7.png

03

97dd8374f722faf600a457fc0dfe1737.png

04

af27b26cd2d7f2dbd6789f97822e47f7.png

为了对误差进行量化,我们计算产量排名前四分之一酒店平均误差值,并且使用如下的公式:
(∑|每天酒店预测值-每天酒店实际值|/每天酒店实际值)/天数

b2a1ebc9ac845e3020fe2909f79f190a.png

从结果来看,误差在2%左右说明该模型的预测效果较好。

在对收入进行预测之后,我们将同样的过程应用到酒店产量预测:

0f5b8082c46684ced65f6b8ef6cf9cc5.png

从决策树结果来看,我们可以看到该模型有八个分支。

同样的,我们将对酒店的产量进行汇总:

4474736a6b60ebc85289b86d0be1b40f.png

并且,得到排名靠前的酒店产量。

在得到预测结果之后,我们对每家酒店的间夜预测值(或收入)与实际值的对比结果。

绘制实际值和预测值的比较图:

8777c8640fc1e0a74bae73cc87f5c7b8.png

从对比图来看,我们可以发现,红色的代表预测的数据,而黑色的线代表着准确度的衡量直线,当预测点越靠近准确度线,那么该模型的预测效果越好,从该图形来看,红色的点,分布在黑色的直线周围,说明该模型的预测结果较好。

为了对误差进行量化,我们计算产量排名前四分之一酒店平均误差值。

(∑|每天酒店预测值-每天酒店实际值|/每天酒店实际值)/天数

b2ec22a015738b8d66d2b76fe40b07d4.png

可以看到酒店产量的预测误差在4%左右,说明该模型的预测效果较好。

最后,我们将所有的预测结果进行汇总,并且输出 :

584caa45bb49d0144c194b8254ba4f56.png

结论

综上所述,通过建立酒店产量预测模型,可以有效识别出通过调整三个预订渠道的价格使得单酒店在三个预订渠道的总产量(或总收入)最大的方法。通过对历史数据的分析和决策树模型的构建,可以对酒店的收入和产量进行科学预测。实验结果表明,该模型具有较好的预测效果,预测误差在2%左右,对酒店投资者和管理者提供了重要的决策依据。通过科学预测和分析,投资者可以更好地评估投资风险,酒店管理者可以优化酒店运营策略,提高酒店的经营效益。因此,在现代社会经济发展的背景下,建立酒店产量预测模型具有重要的实际意义和应用价值。


520088f75e6ffba9c50dfe8f64c08561.png

点击文末“阅读原文”

获取全文完整代码数据资料。

本文选自《R语言用决策树的酒店收入和产量预测可视化研究》。

bb296c9c5d9a304ec46301719d1a447d.jpeg

bf01117a7be0ff77345d8d71a1630049.png

点击标题查阅往期内容

SPSS Modeler决策树分类模型分析商店顾客消费商品数据

R语言航班延误影响预测分析:lasso、决策树、朴素贝叶斯、QDA、LDA、缺失值处理、k折交叉验证

数据分享|PYTHON用决策树分类预测糖尿病和可视化实例

样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化

SAS分类决策树预测贷款申请评分剪枝和结果可视化

分类回归决策树交互式修剪和更美观地可视化分析细胞图像分割数据集

PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像

PYTHON集成机器学习:用ADABOOST、决策树、逻辑回归集成模型分类和回归和网格搜索超参数优化

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析

PYTHON集成机器学习:用ADABOOST、决策树、逻辑回归集成模型分类和回归和网格搜索超参数优化

R语言集成模型:提升树boosting、随机森林、约束最小二乘法加权平均模型融合分析时间序列数据

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析

R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化

R语言基于树的方法:决策树,随机森林,Bagging,增强树

R语言用逻辑回归、决策树和随机森林对信贷数据集进行分类预测

spss modeler用决策树神经网络预测ST的股票

R语言中使用线性模型、回归决策树自动组合特征因子水平

R语言中自编基尼系数的CART回归决策树的实现

R语言用rle,svm和rpart决策树进行时间序列预测

python在Scikit-learn中用决策树和随机森林预测NBA获胜者

python中使用scikit-learn和pandas决策树进行iris鸢尾花数据分类建模和交叉验证

R语言里的非线性模型:多项式回归、局部样条、平滑样条、 广义相加模型GAM分析

R语言用标准最小二乘OLS,广义相加模型GAM ,样条函数进行逻辑回归LOGISTIC分类

R语言ISLR工资数据进行多项式回归和样条回归分析

R语言中的多项式回归、局部回归、核平滑和平滑样条回归模型

R语言用泊松Poisson回归、GAM样条曲线模型预测骑自行车者的数量

R语言分位数回归、GAM样条曲线、指数平滑和SARIMA对电力负荷时间序列预测

R语言样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化

如何用R语言在机器学习中建立集成模型?

R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测

在python 深度学习Keras中计算神经网络集成模型

R语言ARIMA集成模型预测时间序列分析

R语言基于Bagging分类的逻辑回归(Logistic Regression)、决策树、森林分析心脏病患者

R语言基于树的方法:决策树,随机森林,Bagging,增强树

R语言基于Bootstrap的线性回归预测置信区间估计方法

R语言使用bootstrap和增量法计算广义线性模型(GLM)预测置信区间

R语言样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析

R语言随机森林RandomForest、逻辑回归Logisitc预测心脏病数据和可视化分析

R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化

Matlab建立SVM,KNN和朴素贝叶斯模型分类绘制ROC曲线

matlab使用分位数随机森林(QRF)回归树检测异常值

f4dd0157c88b9293eb8c9a232a229d2f.png

a442341556efca6c50ecd75254a922a1.jpeg

5a527724619b5312ec9fb4d7b40a0885.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值