全文链接:https://tecdat.cn/?p=37293
在深入了解公司当前的实际情况和员工内心真实想法的基础上,我们旨在从专业视角出发,为企业在组织管理方面的不足进行诊断,并进行全面审视(点击文末“阅读原文”获取完整代码数据)。
相关视频
为了更好地规划公司未来的发展方向,综合管理部特别组织了这次员工满意度调查。通过分析结果帮助我们通过图表直观展示了不同岗位、年龄段的员工满意度,并探究了影响满意度的多种因素。此外,我们还进行了信度检验,确保了问卷结果的可靠性,并应用了统计学方法对不同工龄和岗位的满意度进行了差异性分析。
我们还基于激励保健理论,使用决策树、随机森林和AdaBoost模型对员工满意度进行了深入分析,并可视化了模型的结果和误差。
本研究在方法的运用、数据的处理以及结论的得出等方面,都进行了全面且深入的探讨。期望这一研究成果不仅能够为当前的学术讨论增添新的视角,也能够为那些在相似研究方向上摸索的人士提供有价值的思路和指引。
1.问卷概况
问卷采用现场随机抽样方式发放,现场回收,问卷发放对象为有网上购物经历的受访者。问卷发放135份,回收135份,回收率100%。回收问卷中有效问卷135分,有效回收率100%
满意度问卷:
问卷数据用手工录入,用Excel和SPSS工具进行分析。本分析报告是在分析结果的基础上撰写而成的。
探索性可视化
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# 读取Excel文件
file_path = '/mnt/data/data.xlsx'
df = pd.read_excel(file_path)
# 检查数据的前几行以了解其结构
df.head()
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.font_manager import FontProperties
# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# 准备数据
df.head()
# 基本可视化:条形图、饼图、散点图
# 条形图:展示不同岗位的平均满意度
plt.figure(figsize=(10, 6))
sns.barplot(x='岗位', y='满意度公式:\nsum(F2:O2)/50', data=df)
plt.title('不同岗位的平均满意度')
plt.xlabel('岗位')
plt.ylabel('平均满意度')
plt.show()
# 饼图:展示不同年龄组的比例
age_counts = df['年龄'].value_counts()
plt.figure(figsize=(8, 8))
plt.pie(age_counts, labels=age_counts.index, autopct='%1.1f%%')
plt.title('不同年龄组的比例')
plt.show()
# 散点图:展示年龄与满意度的关系
plt.figure(figsize=(10, 6))
sns.scatterplot(x='年龄', y='满意度公式:\nsum(F2:O2)/50', data=df)
plt.title('年龄与满意度的关系')
plt.xlabel('年龄')
plt.ylabel('满意度')
plt.show()
# 将工龄转换为类别型数据,以便在散点图中使用不同的颜色
df['本企业工龄'] = df['本企业工龄'].astype('category')
# 绘制散点图,使用不同的颜色表示不同的工龄
plt.figure(figsize=(10, 6))
palette = {category: color for category, color in zip(df['本企业工龄'].cat.categories, colors)}
sns.scatterplot(x='年龄', y='满意度公式:\nsum(F2:O2)/50', hue='本企业工龄', data=df, palette=palette)
plt.title('年龄、工龄与满意度的关系')
plt.xlabel('年龄')
plt.ylabel('满意度')
plt.legend(title='工龄')
plt.show()
条形图:展示了不同岗位的平均满意度,每个岗位使用了不同的颜色。
饼图:显示了不同年龄组的比例,每个年龄组使用了不同的颜色。
散点图:揭示了年龄与满意度之间的关系,不同年龄组使用了不同的颜色。
点击标题查阅往期内容
数据分享|R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据
左右滑动查看更多
01
02
03
04
2. 受访人群社会属性统计分析
2.1 年龄分析
表2.1年龄构成
年龄 | 平均值项:满意度 | 年龄 | 平均值项:满意度 | 年龄 |
35-50岁 | 76.00% | 35-50岁 | 76.00% | 35-50岁 |
35岁-50岁 | 81.21% | 35岁-50岁 | 81.21% | 35岁-50岁 |
35岁以下 | 77.48% | 35岁以下 | 77.48% | 35岁以下 |
50岁以上 | 90.00% | 50岁以上 | 90.00% | 50岁以上 |
年龄 | 平均值项:满意度 | 年龄 | 平均值项:满意度 | 年龄 |
35-50岁 | 76.00% | 35-50岁 | 76.00% | 35-50岁 |
图2.1 年龄构成
受访者的年龄在35岁以下的占69%,35-50岁以下占21% 。由此可见,受访员工主要以中青年为主。
受访者的年龄在35岁以下的占69%,35-50岁以下占21% 。由此可见,受访员工主要以中青年为主。
2.2 岗位分析
表2.2 岗位构成
岗位 | 计数项:人数 |
保洁 | 16 |
工程 | 12 |
管理 | 24 |
客服 | 76 |
绿化 | 1 |
秩序 | 5 |
总计 | 134 |
图2.2 岗位构成
岗位构成中。“绿化”最多,占50%,其次是“客服”和“管理”,各占28%和9%。
3. 受访员工指标单因素分析
3.1 职位分析
表3.1 职位构成
行标签 | 计数项:人数 |
员工 | 70 |
主管 | 41 |
助理经理及以上 | 23 |
总计 | 134 |
按职位统计,人数最多的是“员工”占52%,其次为“主管”占31% 。
3.3 工龄分析
表3.3工龄构成
行标签 | 计数项:人数 |
1-3年 | 48 |
1年以下 | 58 |
3年以上 | 27 |