一键解密备份微信聊天记录!

国内有一款 App 拥有 12.25 亿的月活,你觉得它是什么,可能这个问题还没过脑子呢,咱就能给出答案,微信。

这个体量下的微信,现在是妥妥的国民现象级产品了。

它稍有点风吹草动,像前段时间微信输入法的内测,PC 端微信朋友圈的内测,就惹得一大批网友热议。

不是说我们太敏感,而是微信一方面在积极努力的完善自己的生态圈,搞了很多看着花里胡哨的新功能上线。

另一方面却又有很多被吐槽了很多年的小功能迟迟没有完善。

所以也难怪会有 5 亿人吐槽,会有 1 亿人想教张小龙做产品。

不管怎么样吧,有些问题还是要解决的,比如今天就要和大家聊的微信聊天记录的备份。

要知道,油盐不进的微信老早就宣称自己是不存储用户任何聊天记录的。

也就是所有的数据都存储在终端,我们放心,它也安心。

但事实却是,存于终端的聊天记录占据了很大的存储空间不说,稍有不慎误删或碰到其他意外,一切都会成为过往云烟。

把聊天记录备份下来,或许是你某一时刻的刚需(真到后悔那一刻就晚了)。

不过这个问题微信并不是没有注意到,电脑和手机两个终端的联动就可以把聊天记录备份到本地:

上面两个功能一个是把聊天记录备份到电脑,一个是把聊天记录恢复到手机。

除此之外,你要是想随意访问这个备份,对不起,加密招待。

图片

上面那三个加密过数据文件就存储了我们备份的聊天记录。

这样一来二去之间并没有解决占用大量手机空间的问题,反而在查看信息方面带来了不少限制。

其实网上有很多解密的教程,数据库较为固定、加密方式比较简单的安卓端成了技术党的突破口。

不过因为微信对安卓上存储的数据资料限制了权限,你要是非腾讯开发用户,就只能想办法搞到 root 权限。

没有 root 权限的可以使用迂回战术用安卓模拟器达成目标,不过真正的大头还在后面的数据库解密。

我研究半天发现门槛太高,想让小白也能随意备份,随意访问,小丑只会是我自己。

当然,最直接的办法还是去某宝、某鱼搜一下,会发现有钱确实可以为所欲为。

怎么把这个问题完美(白嫖)解决?

有请今天的主角,我在 GitHub 上扒拉到的最新微信备份神器——WechatBakTool。

WechatBakTool

有一说一,这个微信备份工具的卖点,虽然作者在 GitHub 上列了一堆——

1、理论支持64位版本所有微信

2、支持多微信切换操作

3、支持导出Html文件,TXT文件,支持批量导出

4、支持聊天频率分析,全消息库内容搜索

但我觉得,对于咱们来说,WechatBakTool 最牛的,是这个工具上手 0 门槛。

你只要知道如何解压一个 24M 大小的压缩包,知道双击打开里面的 .exe 可执行文件,你就能备份自己的聊天数据。

图片

虽然在欢迎页里,作者写了「高端」的教程。

图片

但实际操作上——

1、登录微信。

2、点左侧的「左键工作区」。

3、软件会根据微信进程匹配到微信路径,点一下。

4、软件自动提取到你的微信号,如果没匹配对,比如我这里其实是少了个下划线,就自己输入。

5、勾选根据「用户名推断查找」。

6、创建工作区。

图片

当你看到「创建工作区成功」,万事俱备,只需要筛选需要导出的内容即可。

图片

此时的界面变成了这样:

图片

左侧是工作区,一个账号对应一个工作区,你需要多账号的聊天记录那就创建多个工作区;

中间是聊天对象,包括单人聊天、群聊、公众号对话窗,支持搜索;

右侧是聊天内容。

选择对应的聊天对象,右下角就能导出为 HTML 或 TXT 格式的文件。

图片

如果你想搜索聊天记录的内容,可以点进「旧版消息工具」,点击分析,等列表出来后直接搜索就行。

图片

创建工作区和导出这两个步骤,是比较花时间的,吾爱上有老哥测试过,某群聊 17.6M 的纯文字聊天记录,耗时 36s。

我今年 3 月份给电脑升级的时候,清过一次微信,所以最早的聊天记录是 3 月 21 日。

图片

最早的信息是那会发给自己的即刻链接。

图片

所以你在导出后,看到的也是这一条,没错,WechatBakTool 这个工具把分享的链接一并备份了,点击就能跳转。

图片

语音可以听,还能调整倍速:

图片

视频可以看,还能设置全屏、倍速、静音、画中画:

图片

你要是想找源文件,在同目录下都能找到。

图片

整个过程里,没有复杂的操作,不需要配置代码环境,更没有设备限制,你要说有啥缺点?

相比那些更新了好几年的老项目,备份下来的聊天记录样式确实有点丑。

翻了翻 GitHub,首个测试版本出现于今年 8 月。

图片

而最新的版本出现于前天。

图片

现在可用,未来可期。

结语

保存聊天记录这事,之前咱们做过一个调查,哪怕到了 2023 年,还是很多小伙伴有这个需求的。

图片

在 WechatBakTool 的帮助下,能够如此简单的完成备份,当你有这个需求的时候,何不去试试呢。

老规矩,GitHub 地址在这里,有能力的小伙伴可以从这里下载——

github.com/SuxueCode/WechatBakTool

### 箱中值平滑处理概述 箱中值平滑是一种用于信号或图像处理的技术,其核心思想是对一组数据进行分组(即划分为若干个“箱子”),然后对每个箱子内的数据计算中值作为代表值。这种方法可以有效减少噪声的影响,同时保留原始数据的主要特征。 #### 箱中值平滑的核心概念 箱中值平滑通常涉及以下几个步骤: 1. **划分窗口**:将待处理的数据分成固定大小的子集(称为“箱子”)。这些子集通常是连续的一段数据或者二维矩阵中的一个小区域。 2. **提取中值**:对于每一个箱子,从中选取中值作为该箱子的代表性数值。 3. **替换原有值**:用计算得到的中值替代原有的数据值,从而完成平滑操作。 这种技术广泛应用于一维信号去噪以及二维图像处理等领域[^1]。 --- ### C语言实现箱中值平滑算法 以下是基于C语言的一个简单实现示例,适用于单片机环境下的信号过滤: ```c #include <stdio.h> #include <stdlib.h> // 辅助函数:获取数组中位数 int getMedian(int *arr, int size) { if (size == 0) return 0; int temp[size]; for (int i = 0; i < size; ++i) { temp[i] = arr[i]; } // 排序临时数组 for (int i = 0; i < size - 1; ++i) { for (int j = 0; j < size - i - 1; ++j) { if (temp[j] > temp[j + 1]) { int t = temp[j]; temp[j] = temp[j + 1]; temp[j + 1] = t; } } } return temp[size / 2]; // 返回中间位置的值 } // 主函数:箱中值平滑 void boxMedianSmooth(int *data, int dataSize, int windowSize, int *result) { for (int i = 0; i < dataSize; ++i) { int start = (i - windowSize / 2 >= 0) ? i - windowSize / 2 : 0; int end = (i + windowSize / 2 < dataSize) ? i + windowSize / 2 : dataSize - 1; int count = end - start + 1; int window[count]; for (int j = 0; j < count; ++j) { window[j] = data[start + j]; } result[i] = getMedian(window, count); } } int main() { int input[] = {10, 8, 7, 9, 15, 14, 13, 12}; int output[sizeof(input)/sizeof(input[0])] = {0}; int windowSize = 3; // 定义窗体大小 boxMedianSmooth(input, sizeof(input)/sizeof(input[0]), windowSize, output); printf("Input Data:\n"); for (int i = 0; i < sizeof(input)/sizeof(input[0]); ++i) { printf("%d ", input[i]); } printf("\nOutput Data after Box Median Smoothing:\n"); for (int i = 0; i < sizeof(output)/sizeof(output[0]); ++i) { printf("%d ", output[i]); } printf("\n"); return 0; } ``` 上述代码实现了基本的箱中值平滑功能,其中`getMedian`负责求解中值,而`boxMedianSmooth`则定义了一个移动窗口来逐次处理输入数据。 --- ### Go语言实现箱中值平滑算法 如果目标是在Go语言环境下实现类似的逻辑,则可以通过如下方式构建解决方案: ```go package main import ( "fmt" "sort" ) func median(values []float64) float64 { sort.Float64s(values) n := len(values) if n%2 == 1 { return values[n/2] } else { return (values[n/2-1] + values[n/2]) / 2.0 } } func boxMedianSmoothing(data []float64, windowSize int) []float64 { result := make([]float64, len(data)) for i := range data { start := i - windowSize/2 end := i + windowSize/2 if start < 0 { start = 0 } if end > len(data)-1 { end = len(data) - 1 } window := append([]float64{}, data[start:end+1]...) result[i] = median(window) } return result } func main() { inputData := []float64{10, 8, 7, 9, 15, 14, 13, 12} smoothedData := boxMedianSmoothing(inputData, 3) fmt.Println("Original Data:", inputData) fmt.Println("Box Median Smoothed Data:", smoothedData) } ``` 此程序通过自定义`median`函数完成了中值计算,并利用循环结构动态调整窗口范围以适应边界条件[^2]。 --- ### Python实现箱中值平滑算法 Python因其简洁性和强大的库支持,在科学计算领域非常流行。下面是一个简单的例子展示如何使用NumPy加速运算过程: ```python import numpy as np def box_median_smoothing(signal, window_size): padded_signal = np.pad(signal, window_size // 2, mode='edge') filtered_signal = [] for idx in range(len(signal)): window = padded_signal[idx:idx + window_size] median_val = np.median(window) filtered_signal.append(median_val) return np.array(filtered_signal) # 测试数据 input_data = [10, 8, 7, 9, 15, 14, 13, 12] output_data = box_median_smoothing(np.array(input_data), 3) print(f'Original Signal: {input_data}') print(f'Smoothed Signal: {list(output_data)}') ``` 这里借助了`numpy`模块提供的高效数组操作能力简化了开发流程[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值