物联网医疗设备采纳影响因素研究

基于物联网的医疗设备采纳:新兴经济体中终端消费者的实证研究

摘要

物联网(IoT)是一种在众多领域具有广泛应用的技术。医疗保健是其中一个迫切需要利用该技术来帮助数百万人获得医疗专业人员关注和可及性的领域。本研究识别了影响终端用户采纳基于物联网的医疗设备的重要因素,并提出了一个采纳预测模型。该模型基于UTAUT2,并结合文献中新识别的变量。样本(n = 253)来自印度四个主要城市,采用偏最小二乘法‐结构方程模型对测量模型和结构模型进行评估。普遍存在的、社会影响、感知健康风险和相对优势等因素对态度(ATT)具有显著影响,而态度(ATT)进一步影响对基于物联网的医疗设备的行为意向(BI)。促进条件(FC)和价格价值对对该技术的态度(ATT)没有显著影响,但促进条件(FC)对行为意向(BI)具有直接影响。本研究通过向现有知识中引入新变量并基于UTAUT2提出模型,推动了信息系统研究(IS research)的发展。此外,也为实践者提供了重要的实践启示。

关键词 :医疗设备,基于物联网的医疗服务,智能医疗,技术采纳,UTAUT,UTAUT2

1 引言

总体而言,医疗保健领域物联网应用的最终用户采纳率非常低,这使得引入和推广基于物联网的其他服务(如医疗服务)变得困难。当今世界不再依赖单独通信,而是设备之间自动相互通信并提供各种服务。这种普遍存在的(UQ)传感器与设备互联网络如今被称为物联网(IoT),是一项将彻底改变通信方式和服务模式的技术。

全球许多国家的医疗保健服务迫切需要创新,以便能够及时为合适的患者提供帮助。随着基于物联网的医疗服务的实现,这一目标似乎已不再遥不可及。由于需要医生、护士及其他医疗专业人员的患者数量不断增加,这些专业人员面临着日益增长的需求压力。此外,优质医疗的成本已大幅上升,也影响了个人的生活质量。通过引入基于物联网的设备,可有效补充和辅助医疗保健,使患者和医疗专业人员均受益。此类基于物联网的系统有助于疾病的及时检测,使患者能够在合适的时间接受治疗,同时使医疗流程更加高效,能够在关键时刻接纳更多患者并智能分配资源。 示意图0

过去十年间医疗领域的进展表明,在医疗服务发展中融入技术可提高效率,并优化医疗资源的使用[1–3]。物联网(IoT)是一项能够彻底改变服务提供方式的技术,将带来新一轮的技术创新浪潮[4]。

物联网使得诸如电子设备、车辆等物体能够互联互通,房屋通过互联网相互交互,使它们能够成为互联网[5,6]的一部分。这些类型的物体可以通过云计算技术添加物联网应用程序[7]。甚至其他技术,如传感器、射频识别、纳米技术和嵌入式系统技术,都是物联网的重要组成部分。这些技术都被用于增强物联网应用程序,以实现各种目标[3,8]。医疗行业始终面临着以合理成本提供高质量医疗保健的压力,而基于物联网的服务有望实现这一目标。例如,使用基于传感器的系统有助于快速且更好地进行患者监测,从而减少检查次数,避免不必要的医生与患者之间的互动,进而降低费用。物联网技术在早期疾病检测和干预方面也能发挥至关重要的作用。在紧急情况下,物联网应用程序可以迅速通知老年人的看护人员,争取宝贵时间[9]。基于物联网的医疗设备/服务可提供多种解决方案,例如心电图、血压、体温、血糖、血氧饱和度和哮喘的实时监测[10]。

但所有这些好处只有在医疗机构和消费者都采纳物联网医疗设备和服务的情况下,才能得到积极的推广。目前,基于物联网的医疗保健可穿戴设备的采纳率较低,导致终端消费者不愿意使用这些设备,从而使机构难以实现这些优势。公司和政府正在大力投资在物联网等突破性技术中,这些技术可能会引起用户生活方式的范式转变[11]。尽管物联网可以提供更好的医疗保健管理方法,但其成功最终将取决于消费者对这项技术的接受度。

因此,本研究旨在整合影响物联网-基于医疗设备在印度等新兴经济体中接受度的各种因素,其中医疗服务的需求不断增长,在社会公益和商业方面均具有巨大潜力。此外,本研究的目标是整合影响终端消费者采纳基于物联网的医疗设备的关键因素,以基于广受欢迎的UTAUT模型-和TAM-构建一个技术接受模型(TAM),从而为该领域提供理论与实践指导。[12]和TAM[13]。

2 文献综述

无线技术的能力在过去几年中大幅增强,其优势在医疗保健技术的发展中得到了体现。基于物联网的医疗设备发展迅速,大量公司无论是现有企业还是初创公司都已加入为终端消费者提供此类设备的行列。这些设备大多数是可穿戴的,必须佩戴在个人身上,以便能够进行追踪和监测身体功能的变化,并在适当时刻通知或触发必要的行动。已有各种研究采用不同的技术接受模型(TAMs),如技术接受模型(TAM)、理性行为理论(TRA)、计划行为理论(TPB)和UTAUT,来理解这些设备的接受度2[14–17]。近年来,随着这些设备变得更加经济实惠且便于携带,并能够实现对患者的远程监测,人们对自我健康监测设备的认知不断提高[18]。所有这些设备都可以连接到移动设备或智能手机,而如今大多数个人都随身携带这些设备;因此,基于移动应用程序的平台将患者、医生和医疗保健提供机构普遍地联系在一起。以往的研究强调了影响医疗保健技术接受度的各种因素,如普遍性、健康风险、相对优势(REL)、价格价值(PV)、社会影响(SI)以及促进条件(FCs)[15,19]。这些可穿戴医疗技术可能包括健康手环、糖尿病贴片、心脏监测设备、体温传感器和血氧饱和度仪。

尽管已推出多种设备,行业从业者仍关注与这些设备相关的心理因素,尤其是信任问题,这不仅涉及终端消费者,也涉及医疗专业人员。

早期进行的研究表明,广泛采用不仅取决于少数几个因素,还取决于广泛的多-方面问题[20]。因此,基于社会学个人视角的整合模型成为当务之急。过去曾使用多种理论与模型来研究和理解技术接受度。其中第一个此类模型是技术接受模型(TAM),该模型引入了个人对技术接受的概念[21]。基于TAM,UTAUT还融合了八个不同技术接受模型中的构念[12]。自20年前提出以来,UTAUT模型已被应用于各种技术领域[22]。基本的UTAUT模型存在一些局限性,因其最初是为组织环境设计的;因此,为了克服这些-局限,新增了三个构念,即价格价值、享乐动机和习惯,从而将UTAUT模型扩展到终端消费者情境中[23]。因此,UTAUT2有助于确定消费者’对新技术和复杂技术的接受度与使用情况[23]。该模型还帮助研究人员在考虑终端用户的社会与情感方面的同时,研究影响信息技术采纳的因素[24,25]。本研究采用了UTAUT2中的若干因素,如主观规范、便利条件、绩效期望和价格价值,并结合来自其他研究的新兴变量,如普遍性和感知健康风险(PHR),而变量“习惯”则被排除在外。研究指出,由于基于物联网的医疗设备尚不普及,大多数人刚刚开始购买或可能拥有他们的第一台设备,因此习惯形成尚未发生。

3 假设发展

3.1 态度(ATT)与行为意向(BI)

态度被描述为个人’在评估某一对象后表现出喜恶的心理倾向-,且态度以多种方式影响行为-[26],技术接受模型(TAM)、理性行为理论(TRA)和计划行为理论(TPB)均表明,态度可预测行为意图[27]。已有研究评估了医疗专业人员对移动医疗的态度如何影响其采纳该技术的行为意图。同时,在手机银行和电子商务的采纳情境中,态度对行为意向的影响也被证实具有显著性[28]。因此,个人对新技术的态度会影响其行为意图[29,30]。由于基于物联网的医疗设备属于新技术的范畴,我们提出以下假设:

假设H1 :终端用户对基于物联网的医疗设备的态度将影响其行为意图。

3.2 普遍性和态度

普遍性意味着技术可以随时随地轻松访问。任何物联网-技术的优势在于,只要有移动设备和互联网连接,就可以在任何地方访问。这种物联网的普遍性也适用于基于物联网的医疗设备。以往的研究表明,基于物联网的医疗设备的普遍性会影响技术的接受度[32]。此外,这一特性也被称为信息普遍性,意味着相关信息能够透明地提供给利益相关者以采取行动,例如医生及时为患者建议合适的治疗方案[33]。因此,我们假设

假设H2 :普遍性对基于物联网的医疗设备的态度有影响。

3.3 主观规范和态度

SI被定义为同行对使用新技术或系统’意见的相关性[12]。关于预测患者在接受信息与通信技术在医疗保健中已表明社会影响(SI)是一个关键因素。据观察,同行和同事的意见对用户行为具有显著影响[34]。此外,一些研究研究强调了社会影响(SI)在新技术可接受性中的复杂作用[14,35]。因此,我们提出以下假设:

假设3 :主观规范会影响对基于物联网的医疗设备的态度。

3.4 感知健康风险和态度

PHR是个人’对某项活动可能结果的印象,这种印象源于与医疗保健相关的特定结果的不确定性程度。人们在危险情况下做决策时会尽可能预防损失,尤其是涉及个人-健康时。各种研究研究’表明,对技术的感知风险会影响用户做出决策的能力,并最终影响行为意向和最终影响BIs[36,37]。对技术的感知风险增加最终会降低其适应能力的影响。因此,医疗保健服务的用户可能不愿意采用基于物联网的医疗设备;因此,我们假设

假设4 :感知健康风险对基于物联网的医疗设备的态度有负面影响。

3.5 相对优势和态度

相对优势被描述为某项创新相较于其他备选方案所体现出的优越程度[31]。文献中已有研究基于创新扩散理论,证实了相对优势对技术采纳的影响ffusiontheory confirming the effect of REL on technological adoption[38]。本研究采用比UTAUT中的感知期望更为通用的术语“相对优势”,因为感知期望描述的是用户对某项技术的预期,而用户在形成行为意图之前,总会将其与之前接触的技术进行比较。最重要的是,这种比较很大程度上是与亲自前往医疗保健专业人员处就诊进行对比。正如某项研究所指出的,从经济可行性到社会效益均可构成相对优势的一部分[39],因此提出假设:

H5 :相对优势对基于物联网的医疗保健设备的态度有影响。

3.6 价格价值与态度

PV是指金融成本,代表客户在使用技术时所感知的优势与使用该技术的货币成本之间的权衡-衡。它涵盖了购买设备、相关附加服务以及互联网账单数据的费用。先前的研究发现,基于物联网的设备的价格价值是客户接受这项新技术的障碍,因为物联网对客户而言是一个新概念,而如同任何新技术一样,他们在采用基于物联网的产品/服务时面临挑战。因此,我们假设如下:

假设6 :价格价值(PV)对客户对基于物联网的医疗设备的态度(ATT)有影响。

3.7 促进条件对态度和行为意图的影响

使用技术所需的资源和基础设施的可用性被称为便利条件(FCs)。多项研究已检验并发现了便利条件(FCs)作为显著促进技术感知易用性的因素的影响[14,35]。因此,可以得出结论:便利条件(FCs)也可能影响客户对物联网-设备使用易用性的感知,因为这些设备不仅需要手机,还需要其他设备、稳定互联网连接、连接医疗专业人员的后端服务等。此外,以往的研究也发现了用户对技术的感知效用与可用便利条件之间的关联。促进条件(FC)也被认为是影响对技术的态度(ATT)和行为意图(BI)的重要因素之一[22,23]。因此,可以假设:

假设7 :促进条件(FC)对客户对基于物联网的医疗设备的态度(ATT)有影响。

促进条件对采用新技术的行为意图具有显著影响[23]以往的研究发现,促进条件会影响使用手机银行、移动支付系统[29],以及食品配送应用的行为意图[43]。因此,我们假设如下:

H8 :便利条件对基于物联网的医疗设备的行为意图有影响。

4 方法

采用基于定量调查的研究方法来评估所提出的假设和研究模型。由于许多受访者对这项技术的先前意识非常有限,因此在调查开始时通过一个2分钟的短视频介绍了物联网医疗产品。

所有用于测量题项的陈述均来自以往研究,并根据物联网医疗设备的研究情境进行了轻微调整。为检验研究模型,采用了偏最小二乘‐结构方程模型(PLS‐SEM)方法。选择PLS‐SEM作为本研究的方法,是因为它能够同时分析反射型和形成型模型,即有助于分析复杂关系[44]。此外,该方法还能处理小样本量,因此采用十倍规则[45]以确保受访者数量充足。

4.1 数据收集和抽样方法

我们采用目的性抽样,通过在线问卷从拥有某种智能设备的个人中收集数据。该策略是从预先确定的目标人群中进行抽样。采用目的性抽样可提高研究的效度[46]。该策略侧重于寻找符合特定要求的人,即拥有智能设备的人,因为任何拥有智能设备的人都可能在不久的将来成为基于物联网的医疗设备的潜在消费者。以往研究也采用了类似的抽样技术[47,48]。数据来自印度不同城市的在职专业人士和退休人员,这些城市包括德里、加尔各答、班加罗尔和孟买。受访者数量根据各城市的城市人口比例进行分配。共向300名个人发放了问卷,其中265人完整填写了问卷并剔除了遗漏或不完整的问题,最终有效受访者总数为253人。样本量采用十倍规则计算,该规则指出样本量应为模型中关系数量的十倍[45]。根据该方法,本研究的最小样本数量为70人。

4.2 数据分析

由于PLS‐SEM使研究人员能够一次性测试复杂的统计分析,因此被用于检验所提出的模型。该分析分为两个阶段进行采用在线调查收集的数据进行分步分析。第一步检验测量模型,第二步通过构念间的路径系数评估结构模型。数据分析使用SmartPLS 4版本。表1显示了受访者的人口统计特征。

5 结果

本节讨论了模型的信度、效度和收敛性,并探讨了构念的区分效度。本节还给出了所提出模型的拟合优度指数,并评估了各构念之间路径系数的显著性。

5.1 测量模型

本研究的测量模型为反射型,因此通过检验信度和效度(收敛效度和区分效度)来评估模型[45]。为评估构念信度,我们使用了因子载荷和组合信度。表2列出了各构念的因子载荷和组合信度,所有值均高于0.7。收敛效度用于检测某一构念内的题项之间是否不相关[49]。通过计算平均方差抽取(AVE)来检验收敛效度,通常期望AVE值大于0.70[50]。在评估组合信度时,所有大于0.70的值均被视为可接受。

表1:人口统计信息

人口统计信息 (n = 253)
性别
Male 65.20%
女性 34.80%
年龄(岁)
21岁以下 5.36%
21–29岁之间 34.65%
30–39岁之间 12.20%
Between 40–49 25.01%
50以上 22.51%
家庭收入 (卢比/年)
0–250,000 15.60%
250,001–500,000 21.40%
500,001–1,000,000 23.38%
1,000,001–1,500,000 17.88%
高于1,500,000 21.74%

首选,表2列出了每个构念的数值[51]。还需要检验区分效度,以确保观测变量具有独特性且不与其他观测变量相关。本研究采用三种方法来检验区分效度,即 Fornell‐Larcker准则、异质‐单质(HTMT)比率准则和交叉载荷。

5.2 区分效度

检验本研究区分效度的第一种方法是采用Fornell–Larcker准则。表3–显示了该准则的值,即平均方差抽取(AVE),为了确立区分效度,潜在变量之间的相关系数应小于AVE值[52]。

表4 展示了HTMTratio的结果,同样表明区分效度得到了良好确立,因为所有数值均低于0.85。

5.3 结构模型

分析的第二步包括对结构模型的评估和假设检验。图2中所示的整个模型在SmartPLS中使用PLS-SEM自举法进行联合评估。p-值用于检验各变量间关系的显著性,以确定两个构念之间的关系是否显著。当p-值小于0.50时,认为具有显著性[53](图3)。通过R2值以及路径系数的显著性来评估结构模型。R2值在不同研究领域中的评价标准有所不同。在社会科学中,一个R2值为0.20被视为较高,而对于数值研究,R2值达到0.75才被认为较高。R2值超过0.67则被认为是显著的,大于0.33的值被视为中等,小于0.19的值为较弱[54]。该模型对基于物联网的医疗设备的行为意图(BI)的方差解释度为62.8%(R2= 0.628),具有较强的预测相关性。此外,态度(ATT)的R2值为53.5%(R2= 0.535),属于中等偏强水平。

用于评估结构-模型的另一个指标是Q2值。该Q2值用于评估模型的预测相关性。大于零的值表明模型具有预测相关性。表5显示了模型拟合指数。此外,采用标准化均方根残差(SRMR)来评估模型拟合情况,其值为0.073。因此,SRMR值小于0.10表明模型拟合是可接受的[55]。

构念之间路径系数的显著性评估是通过使用自举法进行5000次重采样的PLS‐SEM完成的。假设检验在95%和90%的显著性水平下进行,假设检验的详细信息如下所示。

6 讨论

本研究探讨了影响终端用户采纳基于物联网的医疗设备的因素。过去许多研究考察了医院、医生或其他医疗专业人员对基于物联网的医疗系统的采纳情况,但这些专业人员并不为此付费[40],rather these facilities are provided by the institutions they work for. 因此,有必要研究终端消费者的接受度将在该技术的推广中发挥重要作用。

本研究基于广受欢迎的UTAUT2模型,并结合文献中的其他因素,如普遍性(UQ)、感知健康风险(PHR)、相对优势(REL)、主观规范(SI)和价格价值(PV),探讨这些因素如何通过态度(ATT)影响行为意图。所提出的模型采用PLS‐SEM进行评估,数据通过在线调查收集自253名受访者。该研究模型包含8个潜在变量和28个观测变量,有助于解释基于物联网的医疗设备的采纳。

本研究提出的大多数假设均得到了数据支持。其中,PV对ATT以及FC对ATT的两个关系未得到支持。然而,FCs对技术的行为意图具有直接的显著影响。UQ、SI、PHR和REL被发现对BI有显著影响,但ATT对采纳意愿的影响最强。研究发现FC对BI的影响并不显著,这与以往的研究不同[56],在以往研究中,绩效期望、努力期望、FC和SI被发现对BI有显著影响。本研究中的PV对BI具有显著影响,这意味着消费者会权衡为使用该技术所支付的价格与其获得的实际效益。

使用该技术所获得的实际效益。这一点与在医疗系统背景下整合移动电话的研究类似,这些研究表明,此类技术的实施可以降低价格、节省时间并改善医患互动[57]。特别是对于印度这样的新兴经济体而言,此类技术应具备成本效益,才能实现规模化并惠及大众。

使用物联网医疗设备相较于传统就医方式的普遍性和相对优势被认为更具益处。被视为更有利。这与先前的研究一致,这些研究也发现普遍性(UQ)和相对优势(REL)是行为意图(BI)-的重要影响因素fi。这些研究还发现,感知优势、感知风险和感知-脆弱性会影响对基于物联网的医疗保健系统的接受度。fi显著影响因素fluencer of BI[19,58]。这些研究也发现,感知优势、感知风险和感知-脆弱性会影响fluence 物联网-基于医疗保健系统的接受度。

假设的模型具有较强的模型 fit,因为本研究确定的自变量可以解释因变量(即行为意图)62.8%的方差。即使模型的预测相关性Q2也高达53.2%。以往研究报道了较低的 R2值,分别为27% [59], 51%[60,61], 53%(男性)和58% (女性)以及56% [62], ,用于预测对医疗保健技术的行为意图接受度。因此,本研究提出的模型的预测能力远高于许多以往研究。

6.1 理论与实践意义

这项研究的结果可以从多个方面为医疗保健技术系统做出贡献。基于物联网的医疗设备的一些潜在优势包括降低医疗保健成本,以及提高医疗保健系统的有效性和效率。因此,该研究对于信息系统研究至关重要,有助于理解多种因素对终端用户采纳该技术的影响,因为终端用户的接受度用户纯粹是个人行为,而医疗专业人员的采纳可能受到组织政策的驱动。

研究发现,REL、SI和FC(对BI有直接影响)是 BI的预测因子;因此,市场中的公司必须认识到,密切关注用户对技术有用性的感知至关重要,这应能为用户提供更好的控制和监控,从而改善健康状况。以往研究 [56,64]表明,考虑采纳这些技术的人尤其受到诸如他们对技术有用性的感知、感知易用性、主观规范以及支持性条件是否存在等因素的影响。这些因素都有助于移动健康技术的采纳。

本研究采用UTAUT2模型,这是迄今为止信息系统接受度研究中最全面的模型之一,该模型将八种不同的以往技术接受模型整合为一个[23],,并在基于物联网的医疗设备背景下进一步扩展了该模型-。所提出的模型比以往许多研究具有更高的预测能力。因此,为终端用户对基于物联网的医疗保健技术接受度提供了一个强有力的预测模型。

此外,本研究还为多个利益相关者提供了实践意义。大多数提出的假设都得到了支持;因此,这些因素将有助于生产和推广物联网医疗设备的企业以及社会组织更好地制定政策。企业和公共规划者都可以利用社会影响、感知健康风险和相对优势来更好地传播和普及该技术。

相对优势是影响基于物联网的医疗设备采纳的关键因素,这意味着个人只有在认为该技术相较于其他技术具有优势时,才会选择使用。感知健康风险对采纳也有显著影响;因此,企业应考虑采用多种沟通方法,使消费者对该技术感到安心,并减少他们可能产生的焦虑情绪。

表6:假设评估

假设 Path β 标准差 T统计量 p值 显著性
H1 态度→行为意图 0.640 0.047 13.656 0.000 显著**
H2 普遍性 →态度 0.245 0.067 3.664 0.000 显著**
H3 主观规范→态度 0.307 0.067 4.612 0.000 显著**
H4 感知健康风险 →态度 0.115 0.063 1.810 0.070 显著*
H5 相对优势 →态度 0.249 0.067 3.736 0.000 显著**
H6 价格价值→态度 0.025 0.044 0.559 0.576 不显著
H7 促进条件 →态度 −0.012 0.063 0.187 0.852 不显著
H8 促进条件 →行为意图 0.245 0.053 4.586 0.000 显著**

注:**p < 0.05= 显著;*p < 0.10= 显著。

影响物联网采用的一个重要因素是该技术的普遍性,营销人员应利用这一优势——其最大优点,不仅吸引终端消费者,还要吸引医疗保健专业人员更快地采纳这项技术。此外,本研究发现了主观规范(SI)与行为意图(BI)之间存在显著关系。为了提高基于物联网的医疗设备的采纳率,制造商和应用程序开发者可以探索如何利用用户的主观规范(SI)圈层获益。相关的政策制定者可组织论坛以交流最佳实践,举办研讨会邀请已从该技术中受益的人士分享系统优势[25]。同时,企业可利用主观规范(SI)来管理负面反馈,从而避免阻碍该技术的推广。

7 结论

尽管本研究对物联网-医疗技术领域的研究做出了贡献,但该研究仍存在某些局限性。首先,样本仅限于单一国家印度,而本研究的框架正是基于此。但建议后续研究应利用多个国家的数据开展跟踪-研究。其次,受访者筛选基于其是否拥有智能设备,假设他们将快速采纳物联网-医疗设备。因此,不能认为本研究的结果适用于社会所有群体。第三,由于该技术非常新颖,本研究仅使用了横截面数据,而一项纵向研究有助于我们理解习惯形成及其对采纳的影响。消费者对任何产品的持续使用被认为非常重要,因为获取新客户的成本是服务现有客户的五倍[65]。此外,如先前研究所述,任何基于信息系统的技术只有在实现持续使用的情况下才能成功[66]。我们收集了收入、性别和年龄的数据,但未深入分析这些群组的差异。然而,该模型的解释力为62.8%,就信息系统研究而言已属较高水平,未来的研究可尝试识别可能提升该模型预测-能力的因素。本研究识别出的因素还可进一步探讨,以通过心理视角理解不采纳物联网-医疗设备的原因。

资金信息:未声明。

作者贡献:所有作者均已接受对本稿件全部内容的责任,并批准其提交。

利益冲突:作者声明不存在利益冲突。

知情同意:本研究已从所有参与的个人获得知情同意。

伦理批准:本研究与人类或动物使用无关。

数据可得性声明:本研究期间生成和/或分析的数据集可根据合理要求从通讯作者处获取。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值