两道经典概率题 概率中有两类经典题: a+b+c+d+e = 100 问abcde有多少种组合方式(各数不为0) 问abcde有多少种组合方式(各数可以为0) 这两类经典题有多种变换方式,很多人望着很头疼,这里稍微讲讲几个变换,希望大家可以弄懂。 在看讲解之前,先自测几个题目: 1. 17个桃子分给3个小朋友,总共多少种分法。 提示,分不到的小朋友会哭。 2. 17个桃子分给3个小朋友,小朋友不喜欢吃桃子。有多少种分法。 3. 3个小朋友午饭一起吃20个桃子,一号小朋友吃一个就不饿了,二号小朋友吃两个就不饿了,三号小朋友吃三个才不饿。 有多少种分桃子的方法。(提示,没吃完可以带回家,吃不饱会哭) 4. a+b+c+d+e = 100 问abcde有多少种组合方式(各数不为0) 问abcde有多少种组合方式(各数可以为0) 5. a+b+c+d+e+......+x+y+z = 5050(从a到z) 问abcde...xyz有多少种组合方式(各数不为0) 问abcde...xyz有多少种组合方式(各数可以为0) 如果你觉得都很简单。。。你是大师,不用看了,回家吃桃子吧。 如果你觉得题目确实经典,继续看: 1. 17个桃子分给3个小朋友,总共多少种分法。 提示,分不到的小朋友会哭。 转化为 a+b+c = 17 不可以为0的情况 因为不可以为零,相当于在17个桃子中间放两个加号,两个桃子之间最多只能一个加号。 就相当于17个桃子中间有16个位子,16个位子选2个来放2个加号,将桃子分成三份 于是答案是C16,2 2. 17个桃子分给3个小朋友,小朋友不喜欢吃桃子,小朋友可以不得到桃子。有多少种分法。 转化为 a+b+c = 17 可以为0的情况 因为可以为零,假如我们把加号和17个桃子一起看成19个物体,放到19个坑里。放好之后的排列就是一种分桃的方法。 17个桃子再加上2个+号,一共是19个位置,从这19个位置上选2个位子放加号,就得满足小朋友啦。 因为这个时候加号是可能相邻的或是在最左边最右边的,当他们相邻、或者在最左边最右边的时候,就产生了分到0个的情况。 总数为19个位子选2个位子放加号C19,2 19是什么呢?就是17个桃子+2个加号。 19: 扩展方法:转化为不能为0的问题,每个小孩都先分“-1”个,问题变成17-(-3)=20个桃子分3个小朋友不能为0的情况 =C19,2 3. 3个小朋友午饭一起吃20个桃子,一号小朋友吃一个就不饿了,二号小朋友吃两个就不饿了,三号小朋友吃三个才不饿。 有多少种分桃子的方法。(提示,没吃完可以带回家,吃不饱会哭) 两种方法: 一、先分 0、1、2个,转化为 a+b+c=17 不可以为0, 按上面方法得出 C16,2 二、先分 1、2、3个,转化为 a+b+c=14 可以为0, 按上面方法得出 C16,2 殊途同归 4. a+b+c+d+e = 100 问abcde有多少种组合方式(各数不为0) 问abcde有多少种组合方式(各数可以为0) 答案是C99,4 和 C104,4 5. a+b+c+d+e+......+x+y+z = 5050(从a到z) 问abcde...xyz有多少种组合方式(各数不为0) 问abcde...xyz有多少种组合方式(各数可以为0) 如果你弄懂了 ,这个答案写出来看看? 最后悬赏问题: 1. 上面第五题的答案 2. n个小朋友分m个桃子,假设m,n都会使他们有意义,可以为0 和不可以为0的答案各是多少呢? 请用字母表示 3. 30个桃子5个人分,他们每人至少要12345个,总共多少种方法。 1.C25,5049 C25,5075 2.Cn-1,m-1(不为0) Cn-1,m-1+n(可为0) 3.C4,19 |