(带讲解)bzoj1030 AC自动机+dp

第一道AC自动机上的dp

题意是给出一些字符串,求长为m的字符串包含这些的一共有多少个,字符集A-Z

首先运用补集转换,转而求不含这些串的个数,最后用26^M减掉就行

根据输入的字符串建立AC自动机

dp[i][j]表示当前考虑了i位,当前停留在AC自动机的j号节点

每一次可以由dp[i][j]转移到dp[i+1][k],k是枚举第i+1为后作为j的儿子在AC自动机上的编号

枚举k,就是第i+1为填什么,然后进行下列操作:

首先看看这位能不能填k,判断方法是从j开始向fail[j]跳,看是不是有一个j有一个k儿子,并且k儿子上还有结束标记,只要有一个就证明如果i+1位填k就会让整个字符串出现AC自动机上的字符串,所以不能填k

如果能放,再看看要修改哪个dp数组。

还是从j开始向fail[j]跳,如果j有k这个儿子就直接修改dp[i+1][j的k儿子]就好

每次修改要对修改目标加上dp[i][j]

答案是所有dp[m][x](x是所有AC自动机上的节点)的和

代码
数组名称:
fail:失败指针
danger:结束标记
tr:trie树
q:队列

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#define md 10007
using namespace std;
char ch[1000];
int fail[6010],dp[1200][6010],f,ans;
int tr[6010][30],trcnt,danger[6010],i,j,n,m,q[6010],anss=1;
void insert()    //建立trie树
{
    int now=1,len=strlen(ch+1);
    for (int k=1;k<=len;k++)
    {
        int y=ch[k]-'A'+1;
        if (tr[now][y]) now=tr[now][y];
        else now=tr[now][y]=++trcnt;
    }
    danger[now]=1;
}
void acmach()    //跑出fail数组
{
    int head=0,tail=0,now;
    q[++tail]=1;
    while (head<tail)
    {
        now=q[++head];
        for (int k=1;k<=26;k++)
        if (tr[now][k])
        {
            int y=fail[now];
            while (!tr[y][k]) y=fail[y];
            fail[tr[now][k]]=tr[y][k];
            q[++tail]=tr[now][k];
        }
    }
}
int main()
{
    scanf("%d %d",&n,&m);
    for (i=1;i<=26;i++) tr[0][i]=1;
    trcnt=1;
    for (i=1;i<=n;i++)
    {
        scanf("%s",ch+1);
        insert();
    }
    acmach();
    dp[0][1]=1;    //初始化
    for (i=0;i<=m-1;i++)
        for (j=1;j<=trcnt;j++)
        {
            for (int k=1;k<=26;k++)
            {
                int now=j;
                f=0; 
                while (now) //这个循环判断k能不能放
                {
                    if (danger[tr[now][k]]==1)
                    {
                        f=1;
                        break;
                    }
                    now=fail[now];
                }
                if (f==1) continue;    //不能放直接跳过
                now=j;
                while (!tr[now][k])  now=fail[now];  //j向fail[j]跳直到有k儿子
                now=tr[now][k];
                dp[i+1][now]=(dp[i+1][now]+dp[i][j])%md;    //修改
            }
        }
        for (i=1;i<=m;i++)
        {
            anss=(anss*26)%md;    //补集转换
        }
        for (i=1;i<=trcnt;i++)
        {
            ans=(ans+dp[m][i])%md;    //最终答案是所有dp[m][x](x是所有AC自动机上的节点)的和
        }
        ans=(anss-ans+md)%md;
        cout<<ans%md;
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页