带你重拾概率论

声明: 本文所有内容均来自笔者在学习中所做总结,难免会有错误,谨慎参考; 本文所有内容的整理逻辑以及应用范围均只局限于机器学习相关内容,请勿延伸至其他领域; 本文内容会不定期更新,总结,修改,排版,仅根据笔者所遇到的问题进行相关部分的完善; 若发现错误,还望不吝赐教(留言,邮箱均可); 文章内容可...

2017-12-09 16:13:36

阅读数:307

评论数:0

带你重拾线性代数

声明: 本文所有内容均来自笔者在学习中所做总结,难免会有错误,谨慎参考; 本文所有内容的整理逻辑以及应用范围均只局限于机器学习相关内容,请勿延伸至其他领域; 本文内容会不定期更新,总结,修改,排版,仅根据笔者所遇到的问题进行相关部分的完善; 若发现错误,还望不吝赐教(留言,邮箱均可); 文章内容可...

2017-12-02 11:06:35

阅读数:132

评论数:0

Matlab随机生成元素和为K的向量

随机生成一个1×n1\times n的向量,且所有元素和为1。a = rand(1,10) 0.2362 0.1194 0.6073 0.4501 0.4587 0.6619 0.7703 0.3502 0.6620 0.4162b = a./...

2017-09-30 16:26:54

阅读数:508

评论数:0

拉格朗日乘数法(Lagrange multiplier)

先摆公式,再说推导。求二元函数z=f(x,y)z=f(x,y)在条件φ(x,y)=0下的极值。\varphi(x,y)=0下的极值。(1)作Lagrange函数F(x,y,λ)=f(x,y)+λφ(x,y);F(x,y,\lambda)=f(x,y)+\lambda\varphi(x,y);(2)...

2017-09-29 19:25:11

阅读数:3829

评论数:2

一元隐函数及其求导

在说到隐函数(Implicit function)之前,先回想一下显函数(Explicit function).0.显函数(Explicit function)解析式中明显地用一个变量的代数式表示另一个变量时,称为显函数。即总能写成y=f(x)y=f(x)的形式。 1.隐函数(Implicit f...

2017-09-29 10:55:12

阅读数:1516

评论数:0

微分与可微

一、微分的定义什么是微分? 先来看一个例子设有一个半径为r的金属圆片受热后其半径增加了Δr\Delta_r,求面积A的增量ΔA\Delta A A(r)ΔA=πr2=π(r+Δr)2−πr2=π[2rΔr+(Δr)2]=2rπΔr+π(Δr)2\begin{align*}A(r) &=\...

2017-09-16 16:34:05

阅读数:452

评论数:0

梯度(Gradient vectors)

梯度(Gradient vectors)我们知道方向导数讨论的是曲面上任意一点沿着任一方向变化的速率,即方向导数是一个值;而梯度讨论的是其速率变化最快的方向,即梯度是一个向量。∂f∂l⃗ ={∂f∂x,∂f∂y}⋅{cosα,cosβ}=gradf⋅l0→=|gradf|⋅|l0→|⋅cosθ=|...

2017-09-08 21:21:59

阅读数:313

评论数:0

方向导数(Directional derivatives)

方向导数(Directional Derivatives)提到方向导数,我们先来回顾一下导数(Derivative)和偏导数(Partial Derivative)的几何意义。 导数是二维平面中,曲线上某一点沿着x轴方向变化的速率,即函数f(x)f(x)在该点的斜率; 偏导数是在三维空间中,曲面上...

2017-09-08 20:31:51

阅读数:613

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭