Enhanced soft subspace clustering integrating within-cluster and between-cluster information

1. 聚类的基本思想 再介绍下面这篇论文之前,我们先来回顾一下聚类算法的核心思想。其核心主要是让聚类后的各个簇“离得尽可能远”,这样就能最大程度上使得聚类的准确度最高。那么现在的问题就是我们应该如何来量化“离得尽可能远”呢?或者什么叫“离得尽可能远”,怎么来刻画? 我们都知道传统Kme...

2018-05-02 14:35:24

阅读数:89

评论数:0

An Entropy Weighting k-Means Algorithm for Subspace Clustering of High-Dimensional Sparse Data

本内容整理自 An Entropy Weighting k-Means Algorithm for Subspace Clustering of High-Dimensional Sparse Data 前一篇论文Automated Variable Weighting in k-M...

2017-10-14 16:02:12

阅读数:643

评论数:0

Automated Variable Weighting in k-Means Type Clustering

本内容整理自 Automated Variable Weighting in k-Means Type Clustering 这篇文章主要的创新点在于–给予特征向量的每个维度一个权重ωjωj\omega_j,称之为W-k-Means的方法。该方法主要用于数据挖掘和统计学中的特征筛选。 ...

2017-10-08 17:25:23

阅读数:513

评论数:2

提示
确定要删除当前文章?
取消 删除
关闭
关闭