最长上升子序列LIS(Longest Increasing Subsequence)

1 篇文章 0 订阅
 
最长上升子序列问题是各类信息学竞赛中的常见题型,也常常用来做介绍动态规划算法的引例。问题描述:给出一个序列a1,a2,a3,a4,a5,a6,a7....an求它的一个子序列(设为s1,s2,...sn),使得这个子序列满足这样的性质,s1<s2<s3<...<sn,并且这个子序列的长度最长。输出这个最长的长度。例如有一个序列:1  7  3  5  9  4  8,它的最长上升子序列就是 1 3 4 8 长度为4.

思路:维护一个一维数组c,并且这个数组是动态扩展的,初始大小为1,c[i]表示最长上升子序列长度是i的所有子串中末尾最小的那个数,根据这个数字,我们可以比较知道,只要当前考察的这个数比c[i]大,那么当前这个数一定能通过c[i]构成一个长度为i+1的上升子序列。当然我们希望在C数组中找一个尽量靠后的数字,这样我们得到的上升子串的长度最长,查找的时候使用二分搜索,这样时间复杂度便下降了。

//最长上升子序列nlogn模板
//入口参数:数组名+数组长度,类型不限,结构体类型可以通过重载运算符实现
//数组下标从1号开始。
template<class T>
int bsearch(T c[],int n,T a)
{


    int l=1, r=n;
    while(l<=r)
    {
        int mid = (l+r)/2;
        if( a > c[mid] && a <= c[mid+1] ) return mid+1; // >&&<= 换为: >= && <
        else if( a < c[mid] ) r = mid-1;
        else l = mid+1;
    }


}


template<class T>
int LIS(T a[], int n)
{


    int i, j, size = 1;
    T *c=new T[n+1];
    c[1] = a[1]; 


    for(i=2;i<=n;++i)
    {
        if( a[i] <= c[1] ) j = 1;
        else if( a[i] >c[size] )
            j=++size;
        else
            j = bsearch(c, size, a[i]);
        c[j] = a[i];
    }
    return size;
}



                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值