思路:维护一个一维数组c,并且这个数组是动态扩展的,初始大小为1,c[i]表示最长上升子序列长度是i的所有子串中末尾最小的那个数,根据这个数字,我们可以比较知道,只要当前考察的这个数比c[i]大,那么当前这个数一定能通过c[i]构成一个长度为i+1的上升子序列。当然我们希望在C数组中找一个尽量靠后的数字,这样我们得到的上升子串的长度最长,查找的时候使用二分搜索,这样时间复杂度便下降了。
//最长上升子序列nlogn模板
//入口参数:数组名+数组长度,类型不限,结构体类型可以通过重载运算符实现
//数组下标从1号开始。
template<class T>
int bsearch(T c[],int n,T a)
{
int l=1, r=n;
while(l<=r)
{
int mid = (l+r)/2;
if( a > c[mid] && a <= c[mid+1] ) return mid+1; // >&&<= 换为: >= && <
else if( a < c[mid] ) r = mid-1;
else l = mid+1;
}
}
template<class T>
int LIS(T a[], int n)
{
int i, j, size = 1;
T *c=new T[n+1];
c[1] = a[1];
for(i=2;i<=n;++i)
{
if( a[i] <= c[1] ) j = 1;
else if( a[i] >c[size] )
j=++size;
else
j = bsearch(c, size, a[i]);
c[j] = a[i];
}
return size;
}