thisispan

欢迎与各位朋友探讨,交流。

C++计算最大公约数(辗转相除法)

典型例题:

一.辗转相除法

例1 。求两个正数8251和6105的最大公因数。

(分析:辗转相除→余数为零→得到结果)

解:8251=6105×1+2146

显然8251与6105的最大公因数也必是2146的因数,同样6105与2146的公因数也必是8251的因数,所以8251与6105的最大公因数也是6105与2146的最大公因数。

6105=2146×2+1813

2146=1813×1+333

1813=333×5+148

333=148×2+37

148=37×4+0

则37为8251与6105的最大公因数。

以上我们求最大公因数的方法就是辗转相除法。也叫欧几里德算法,它是由欧几里德在公元前300年左右首先提出的。

1. 为什么用这个算法能得到两个数的最大公因数?

利用辗转相除法求最大公因数的步骤如下:

第一步:用较大的数m除以较小的数n得到一个商q0和一个余数r0

第二步:若r0=0,则n为m,n的最大公因数;若r0≠0,则用除数n除以余数r0得到一个商q1和一个余数r1

第三步:若r1=0,则r1为m,n的最大公因数;若r1≠0,则用除数r0除以余数r1得到一个商q2和一个余数r2

……

依次计算直至rn=0,此时所得到的rn-1即为所求的最大公因数。

 

 

练习:利用辗转相除法求两数4081与20723的最大公因数。

 

 

 

 

2。辗转相除法包含重复操作的步骤,因此我们可用__循环_______结构来构造算法,

利用辗转相除法求最大公因数的步骤:




阅读更多
文章标签: c++ 算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭