机器学习周志华
文章平均质量分 89
ThitherShore
Think Big and Work Hard.
展开
-
机器学习(周志华)习题解答4.3: Python小白详解ID3决策树的实现
我是刚刚学python,所以尽我所能十分详细地解释了几乎每个步骤……希望和我一样的新手可以从中获益。本文以周志华《机器学习》习题4.3为例,用python实现了ID3决策树的构建和绘图。原创 2016-08-30 00:29:54 · 9609 阅读 · 9 评论 -
机器学习(周志华)习题解答1.4: 两个算法到底孰优孰劣?没有免费午餐定理
介绍和简单证明“没有免费的午餐定理”,是说针对某一域的所有问题,所有算法的期望性能是相同的。即该域的有些问题上算法 A 比 B 好,则其余问题则有 B 比 A 好。所以“脱离距离问题去讨论选择什么算法更好是毫无意义的”,因为若对所有潜在的问题考虑,则所有算法性能是一样的。但机器学习是针对某一特定问题去考虑的,所以我们仍然有选择算法优劣的必要性和可行性。原创 2016-08-26 07:14:53 · 12823 阅读 · 7 评论 -
机器学习(周志华)习题解答1.1-1.3: 理解假设和版本空间
本文介绍版本空间,假设空间的概念并举例求解。另外介绍和简单证明“没有免费的午餐定理”,是说针对某一域的所有问题,所有算法的期望性能是相同的。即该域的有些问题上算法 A 比 B 好,则其余问题则有 B 比 A 好。所以“脱离距离问题去讨论选择什么算法更好是毫无意义的”,因为若对所有潜在的问题考虑,则所有算法性能是一样的。但机器学习是针对某一特定问题去考虑的,所以我们仍然有选择算法优劣的必要性和可行性。原创 2016-08-25 09:10:10 · 17084 阅读 · 14 评论