thormas1996
码龄7年
关注
提问 私信
  • 博客:253,653
    社区:1,323
    问答:558
    255,534
    总访问量
  • 83
    原创
  • 1,975,992
    排名
  • 96
    粉丝
  • 0
    铁粉

个人简介:关注机器学习,深度学习,联邦学习,推荐系统等相关内容

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2018-06-19
博客简介:

thormas1996的博客

查看详细资料
个人成就
  • 获得114次点赞
  • 内容获得64次评论
  • 获得397次收藏
  • 代码片获得123次分享
创作历程
  • 2篇
    2020年
  • 36篇
    2019年
  • 46篇
    2018年
成就勋章
TA的专栏
  • 个人笔记
    5篇
  • 强化学习
    4篇
  • 机器学习
    4篇
  • 深度学习
    8篇
  • 自然语言处理
    11篇
  • python
    10篇
  • 代码笔记
    17篇
  • Else
    4篇
  • 信息安全
    2篇
  • 迁移学习
    3篇
  • 联邦学习
    11篇
  • 推荐系统
    5篇
兴趣领域 设置
  • 人工智能
    神经网络
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

367人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

python笔记 查看安装包的路径

例如需要查看numpy的路径import numpyprint(numpy.__file__)
原创
发布博客 2020.08.19 ·
378 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

Conference Date (update at 2020.07.28)

Medical ImageIEEE Transactions on Medical ImagingIF = 6.685(2020)IPMIVenue: Rønne at the island of Bornholm, DenmarkConference Dates: June 27 - June 2, 2021Paper registration: 29 November 2020Submission of full papers: 6 December 2020ISBIVenue: Ni
原创
发布博客 2020.07.28 ·
471 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

url open error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed

Python3 在下载数据集的时候需要多验证一次证书,会导致以下错误:URLError: <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:748)>解决办法:import sslssl._create_default_https_context = ssl._cr...
原创
发布博客 2019.10.29 ·
1174 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

极大极小搜索算法 minimax search

minimax search设计象棋等AI模型时常常需要使用博弈论的思想,minimax search就是一种基于当前状态推测出使我方最有利而对方最不利的行动,在实际模型中需要考虑状态函数,树的深度,时间成本等等因素,这里只讲一个最简单的例子说明minmax search的计算过程。假设根据当前局面我们得到一个下图所示的博弈树:从上往下,单数层是我方行动,双数层是对方行动,我方行动需要选择...
原创
发布博客 2019.10.21 ·
10166 阅读 ·
8 点赞 ·
2 评论 ·
53 收藏

论文阅读 Multi-Task Deep Neural Networks for Natural Language Understanding

这是今年arXiv上Microsoft Research的一篇文本embedding的文章,原文在Multi-task DNN。这篇文章的思路很简单,在BERT的基础上,用multi-task learning对embedding layer进行fine-tuned,但在GLEU benchmark上的实验结果非常好,九个NLU任务中八个的表现都有提升,benchmark提升了足足2.2%。M...
原创
发布博客 2019.10.12 ·
538 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tensorflow笔记 cross entropy loss

交叉熵损失函数是模型中非常常见的一种损失函数,tensorflow中一个计算交叉熵的函数:tf.nn.sigmoid_cross_entropy_with_logits,也可以调用keras中的函数: tf.keras.backend.binary_crossentropy,两者有一些不同。先来看看tf自带的sigmoid_cross_entropy_with_logits:tf.nn.si...
原创
发布博客 2019.07.09 ·
1829 阅读 ·
0 点赞 ·
3 评论 ·
2 收藏

联邦学习论文阅读:Variational Federated Multi-Task Learning

这篇文章是探索联邦学习的框架下的多任务学习,稍后会整理一下之前的那篇multi task learningto be continued
原创
发布博客 2019.07.03 ·
3157 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

调参笔记:神经网络收敛问题

最近网络一直有收敛的问题,怀疑是梯度在训练的时候爆炸或归零导致分类器对evaluate集全0或全1预测。This blog gives a quick step to check the model:https://blog.slavv.com/37-reasons-why-your-neural-network-is-not-working-4020854bd607...
原创
发布博客 2019.07.01 ·
1313 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

联邦学习论文阅读:Secure Federated Matrix Factorization

这是六月刚刚挂上arXiv的文章,杨老师学生的工作摘要这篇文章提出了联邦化的矩阵分解算法,作者发现传梯度也会泄露信息,所以利用同态加密来进一步保证用户数据的隐私性。框架基本框架和federated collaborative filtering那篇文章是一样的:一个标准的横向联邦框架,user vector保留在本地训练,只上传加密后的更新梯度,服务器进行汇总,然后训练product ve...
原创
发布博客 2019.06.24 ·
1774 阅读 ·
4 点赞 ·
0 评论 ·
6 收藏

联邦学习论文阅读:Fair Resource Allocation in Federated Learning

arXiv上刚刚挂的一篇文章Fair Resource Allocation in Federated Learning,作者是CMU的AP Virginia Smith组的,搜了一下主页,居然是一个超级年轻的小姐姐~Motivation之前横向联邦学习一般都是follow google的FedAvg算法,将所有用户(或者随机一部分)更新的梯度取个平均作为中心模型的更新参数。显然,这种做法虽然...
原创
发布博客 2019.06.04 ·
4115 阅读 ·
6 点赞 ·
11 评论 ·
25 收藏

联邦学习相关资料

联邦学习相关的博客,论文以及PPT,持续更新个人能力有限,欢迎补充~Blog Google16年解释联邦学习用于输入预测应用的blog:Federated Learning: Collaborative Machine Learning without Centralized Training Data, 2016 杨强老师18年解释联邦学习概念的blog:CCCF专栏 | 联邦学习...
原创
发布博客 2019.06.03 ·
2931 阅读 ·
7 点赞 ·
0 评论 ·
41 收藏

联邦学习论文阅读:Asynchronous Federated Optimization

这是UIUC的一篇刚刚挂在arXiv上的文章:Asynchronous Federated Optimization。我对边缘计算和异步算法不太了解,直观的理解是作为一个user,我上传的梯度参数是延迟的,也就是说central server当前已经更新过这次的梯度了,并且已经开始计算下一次甚至下下次的global gradient了,那么我这次的参数实际上是混在其他用户下一次更新的数据中的。...
原创
发布博客 2019.05.30 ·
4320 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

深度学习笔记 简单神经网络反向传播的推导

最近手推了一下神经网络梯度更新中的参数偏导,做一个笔记。模型我们考虑一个非常简单的神经网络,输入embedding后只通过一个全连接层,然后就softmax输出预测值Created with Raphaël 2.2.0Input X: 1xnEmbedding Layer Z1 = WX: 1xNActivation Layer (Relu) Z2 = relu(Z1): 1xNFully ...
原创
发布博客 2019.05.23 ·
334 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

推荐模型评价指标 AUC

推荐中常用的模型评价指标有准确率,召回率,F1-score和AUC。1. 什么是AUCAUC指标是一个[0,1]之间的实数,代表如果随机挑选一个正样本和一个负样本,分类算法将这个正样本排在负样本前面的概率。值越大,表示分类算法更有可能将正样本排在前面,也即算法准确性越好。2. AUC的计算方法绘制ROC曲线,ROC曲线下面的面积就是AUC的值假设总共有(m+n)个样本,其中正样本有m个...
原创
发布博客 2019.05.22 ·
3730 阅读 ·
3 点赞 ·
0 评论 ·
13 收藏

tensorflow笔记 tf.metrics.accuracy

tf.metrics.accuracy用于计算模型输出的准确率tf.metrics.accuracy( labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None)return accuracy, update...
原创
发布博客 2019.05.17 ·
1596 阅读 ·
1 点赞 ·
2 评论 ·
5 收藏

tensorflow 数据读取,哪位帮我解释一下

答:

第一个是在先构建计算图,在运算的时候再导入数据,第二个是先把所有数据加载进来,sess.run其实没啥用,当然会慢一点

回答问题 2019.05.17

python笔记 shuffle和permutation

函数shuffle与permutation都可以打乱数组元素顺序,区别在shuffle直接在原来的数组上进行操作,而permutation不直接在原来的数组上进行操作,会返回一个新的打乱顺序的数组。import numpy as npa = np.arange(4)print('a:', a)b = np.random.shuffle(a)print('a:',a)print('b:...
原创
发布博客 2019.05.16 ·
551 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

python笔记 list和array

python中的list和array是常用两种数据类型。list中的数据类不必相同的,而array中的类型必须全部相同。list中保存的是数据存放的地址,也就是指针。import numpy as npimport pandas as pda = [1,2,3]b = np.array([1,2,3])c = pd.DataFrame(a)d = pd.DataFrame(b)pri...
原创
发布博客 2019.05.16 ·
268 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

tensorflow笔记 协调器tf.train.Coordinator

原理TensorFlow中有两个函数管理Session中的多线程:Coordinator和 QueueRunner。同一个Session中可以创建多个线程,但所有线程必须能被同步终止,异常必须能被正确捕获并报告。当会话终止的时候, 队列必须能被正确地关闭。Coordinator用来管理在Session中的多个线程,可以用来同时停止多个工作线程,同时报告异常,当程序捕捉到这个异常后之后就会终止...
原创
发布博客 2019.05.14 ·
575 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tensorflow笔记 string_input_producer, slice_input_producer

tensorflow将读取数据分为了两个步骤,先读入文件名队列,再读入内存队列进行运算。为了减少GPU的等待时间,提高计算速度,tensorflow使用两个线程来分别处理这两个步骤。tf有三个函数string_input_producer, slice_input_producer, input_producer用于建立文件名队列。函数参数如下所示,除了tensor list是必须外,其余都可以...
原创
发布博客 2019.05.14 ·
1558 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多