QA的研究相当多,只对提升回答多样性做一些调研,有新的文章或者方法欢迎私信论文讨论
论文
Generating High-Quality and Informative Conversation Responses with Sequence-to-Sequence Models
原文链接
Louis Shao, Stephan Gouws, Google Brain 2017
基础模型还是seq2seq+attention机制,创新之处在于提出了glimpse model和在beam search时用随机抽样+rerank。
glimpse model
首先作者是想要加入target-side attention,简单来说就是将输入也考虑进attention计算中,即self-attention的思想。但是很尴尬得发现超内存了,于是提出一种glimpse-model,原理就是既然一次无法decode太多,那就一次只decode K个,然后将这K个输出考虑进attention,再decode接下来的K个值。简单来说,第一次输出y1,第二次输入为[x;y1],生成y2 …..
需要改进的地方在于后几次decode的时候,由于是直接将encoder的hidden state输入进decoder,所以在计算效率和效果上肯定不如从当前开始的位置对应的input处开始。

本文探讨了如何使用序列到序列模型生成高质量和信息丰富的对话响应。重点介绍了glimpse模型、随机解码策略以及主题感知神经响应生成,旨在增加对话的多样性。尽管这些方法取得了一定成效,但也存在如句子流畅度下降等问题。
最低0.47元/天 解锁文章
366

被折叠的 条评论
为什么被折叠?



