论文阅读 Question Answering

本文探讨了如何使用序列到序列模型生成高质量和信息丰富的对话响应。重点介绍了glimpse模型、随机解码策略以及主题感知神经响应生成,旨在增加对话的多样性。尽管这些方法取得了一定成效,但也存在如句子流畅度下降等问题。
摘要由CSDN通过智能技术生成

QA的研究相当多,只对提升回答多样性做一些调研,有新的文章或者方法欢迎私信论文讨论

论文


Generating High-Quality and Informative Conversation Responses with Sequence-to-Sequence Models

原文链接
Louis Shao, Stephan Gouws, Google Brain 2017
基础模型还是seq2seq+attention机制,创新之处在于提出了glimpse model和在beam search时用随机抽样+rerank。

  • glimpse model
    首先作者是想要加入target-side attention,简单来说就是将输入也考虑进attention计算中,即self-attention的思想。但是很尴尬得发现超内存了,于是提出一种glimpse-model,原理就是既然一次无法decode太多,那就一次只decode K个,然后将这K个输出考虑进attention,再decode接下来的K个值。简单来说,第一次输出y1,第二次输入为[x;y1],生成y2 …..

    需要改进的地方在于后几次decode的时候,由于是直接将encoder的hidden state输入进decoder,所以在计算效率和效果上肯定不如从当前开始的位置对应的input处开始。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>