讲座笔记 transfer learning via learning to transfer

该讲座探讨了转移学习的框架,旨在最大化从源领域到目标领域的性能提升。通过元认知反思,避免专家设计,利用类似于元学习的原理进行迁移。文章介绍了将知识投影到影空间,并使用目标函数来衡量迁移的有效性,特别是在目标领域标注数据有限的情况下,表现出显著的性能提升。
摘要由CSDN通过智能技术生成

transfer learning via learning to transfer

Ying Wei

突然发现一年前听过师姐的讲座,当时没来得及细看文章,更详细的笔记见:论文笔记

背景:

Transfer learning: 从标注数据多的领域到少的领域

Research issue: when, how, what to transfer?

有的语义相关,有的关联较少

Former work: Brute-force exploration / expert design

能否不用expert design:Meta-cognitive reflection

 

框架:

Framework: learning to transfer framework

xyz: 源与目标领域,可以迁移的知识,带来performance的提升

目的是max z|x

 

与meta learning原理相似,meta的task是ML,而本文是迁移学习

可以迁移的知识可以认为是不同的迁移学习算法(浅层),用W_e参数,视为投影到影空间(类似embedding matrix)

将x y map到z上,回归任务 目标函数与1/performance ratio,即min 目标函数(1/performance ratio)

f(x1,x2,W_e)包含三部分,第一部分是两个distribution中心的距离,(W_e map后越接近越利于迁移学习)(mean),第二个是衡量overlap(越多越好 variance),第三个是衡量目标领域discriminative

目标函数是non linear,用kernel trick

Generation bound: 保证过去用了越多迁移学习,效果越好,确保可以online learning

 

实验:

Dataset: Caltech 256 -> Google Sketches

Baseline: 所有用到的迁移学习算法

Result:相比baseline有提高,特别是目标领域标注数据很少时,提升很大

              验证generation bound

              验证目标函数定义的合理性

 

W_e参数化后可以得到新的更好的学习的知识,而非仅仅是迁移学习算法的线性组合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>