最大均值差异MMD用于衡量两个分布之间的相似性,迁移学习中经常用其来衡量源领域和目标领域的差异性。它的基本假设是:如果对于所有以分布生成的样本空间为输入的函数f,两个分布生成的样本足够多,且其对于函数f所有对应值的均值都相等,那么可以认为这两个分布是同一个分布。
如何用MMD来衡量两个分布的相似性?
简单来说,就是找一个在样本空间的连续函数f,将两个分布的样本在f上的均值相减,要求函数f使这个差值最大。
s u p f E x ( f ( x ) ) − E y (
最大均值差异(MMD)是评估两个分布间相似性的方法,尤其在迁移学习中用于比较源领域和目标领域。通过寻找在样本空间上连续函数f,使得两个分布样本在f上的均值差达到最大,以此来判断分布是否相同。在再生核希尔伯特空间(RKHS)中,MMD与高斯或拉普拉斯函数相关,实现代码可供参考。
最大均值差异MMD用于衡量两个分布之间的相似性,迁移学习中经常用其来衡量源领域和目标领域的差异性。它的基本假设是:如果对于所有以分布生成的样本空间为输入的函数f,两个分布生成的样本足够多,且其对于函数f所有对应值的均值都相等,那么可以认为这两个分布是同一个分布。
如何用MMD来衡量两个分布的相似性?
简单来说,就是找一个在样本空间的连续函数f,将两个分布的样本在f上的均值相减,要求函数f使这个差值最大。
s u p f E x ( f ( x ) ) − E y (
8064

被折叠的 条评论
为什么被折叠?
>