最大均值差异 Maximum Mean Discrepancy(MMD)

最大均值差异(MMD)是评估两个分布间相似性的方法,尤其在迁移学习中用于比较源领域和目标领域。通过寻找在样本空间上连续函数f,使得两个分布样本在f上的均值差达到最大,以此来判断分布是否相同。在再生核希尔伯特空间(RKHS)中,MMD与高斯或拉普拉斯函数相关,实现代码可供参考。
摘要由CSDN通过智能技术生成

最大均值差异MMD用于衡量两个分布之间的相似性,迁移学习中经常用其来衡量源领域和目标领域的差异性。它的基本假设是:如果对于所有以分布生成的样本空间为输入的函数f,两个分布生成的样本足够多,且其对于函数f所有对应值的均值都相等,那么可以认为这两个分布是同一个分布。

如何用MMD来衡量两个分布的相似性?
简单来说,就是找一个在样本空间的连续函数f,将两个分布的样本在f上的均值相减,要求函数f使这个差值最大。

s u p f E x ( f ( x ) ) − E y (

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>