2018年Huawei Noah’s Ark Lab的文章Federated meta-learning for recommendation的阅读笔记
想法
用元学习的方法解决少数据的问题,并用差分隐私保护用户的隐私性
这篇文章作者声称有两点创新,一是meta-learning在算法层面,二是用联邦学习保护用户隐私。但文章中的算法A与之前工作没有任何区别,都是模型的初始化权重,也就是meta-learner。总的来说,就是将meta-learning与federated learning相结合,也是现在大部分联邦学习文章的思路,并无什么创新的地方。
框架

首先服务器有一个算法A,也即meta-learning中的meta-learner,模型的初始化权重。第一步服务器将A传给每个用户
第二步用户将自己的数据分为两部分,support dataset和test dataset。通过support dataset训练出一个模型 θ {\theta}

本文介绍了华为诺亚方舟实验室2018年的研究,探讨如何使用联邦学习和元学习来应对推荐系统中的数据稀疏问题,同时保护用户隐私。文章提出将元学习应用于联邦学习框架,但并未展示显著的创新点,主要思路是结合两者以优化模型初始化权重。实验部分未详述。
最低0.47元/天 解锁文章
703

被折叠的 条评论
为什么被折叠?



