You task is to find minimal natural number N, so that N! contains exactly Q zeroes on the trail in decimal notation. As you know N! = 1*2*...*N. For example, 5! = 120, 120 contains one zero on the trail.
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case contains an integer Q (1 ≤ Q ≤ 108) in a line.
For each case, print the case number and N. If no solution is found then print 'impossible'.
3
1
2
5
Case 1: 5
Case 2: 10
Case 3: impossible
解析:
给你一个数Q,代表N!中 末尾连续0的个数。让你求出最小的N。
这个问题可以用数学的方法简单分析。
10 = 2 * 5(质因数分解)
从最末尾开始连续地每出现一个0,即表示有一个 (2 * 5) 组出现。
而对于正整数 N,在[0, N]范围内,质因子中含有 2 的总是会比质因子含有 5 的要多。
即如果质因子有 5 的数字总数为 a,那么质因子为2的总数 b >= a.
因此,有x个质因子含有 5 的数,就有至少x个含有 2 的数。
于是,只要需要知道质因数含有 5 的数字有多少个,即可知道末尾连续出现 0 的个数有多少
程序如下:
#include<cstdio>
long long sum(long long N)
{
long long ans = 0;
while(N>0)
{
ans=ans+N/5;
N /= 5;
}
return ans;
}
int main()
{
int t,k=1;
scanf("%d",&t);
while(t--)
{
long long Q;
scanf("%lld",&Q);
long long left=1,right=1000000000,ans = 0;
while(right>=left)
{
int mid=(left+right) /2;
if(sum(mid)==Q)
{
ans=mid;
right=mid-1;
}
else if(sum(mid)>Q)
right=mid-1;
else
left=mid+1;
}
printf("Case %d: ", k++);
if(ans>0)
printf("%lld\n", ans);
else
printf("impossible\n");
}
return 0;
}

本文介绍了一种算法,用于找到最小的自然数N,使得N!在十进制表示下恰好包含Q个连续的尾随零。通过数学分析,我们发现只需要计算能被5整除的因子数量就能解决问题,并提供了一个高效的实现方案。
1231

被折叠的 条评论
为什么被折叠?



