Gabor变换属于加窗傅立叶变换,Gabor函数可以在频域不同尺度、不同方向上提取相关的特征。另外Gabor函数与人眼的生物作用相仿,所以经常用作纹理识别上,并取得了较好的效果。Gabor变换是短时Fourier变换中当窗函数取为高斯函数时的一种特殊情况.Gabor变换的本质实际上还是对二维图像求卷积。因此二维卷积运算的效率就直接决定了Gabor变换的效率。
根据傅立叶变换理论,对图像进行二维卷积等价于对图像的二维傅立叶变换以及核函数的二维傅立叶变换在频域求乘法。通过二维傅立叶变换可以有效提高卷积的运算效率。但在进行傅立叶变换时一定要注意“卷绕误差效应”,只有正确对原有图像以及卷积核填补零后,才能得到正确的卷积结果。程序中取4个频率(v=0, 1, ..., 3),8个方向(即K=8,u=0, 1, ... ,7),共32个Gabor核函数。不同频率不同方向的Gabor函数可通过下图表示:
图1 对一张人脸的Gabor变换
t
图2 gabor变换核
因为我做人脸识别是采用GABOR+LBP+NMF的步骤,从准确度来看只用LBP+NMF,或者只用NMF的效果是远远比不上加上Gbaor变换之后的。所以使用Gabor变换能较大增强各项识别结果。
然而从网上寻找Gabor变换的C语言版本却很难,最后只好按照论文思路自己编写了一个C++Gabor变换,经过测试绝对无错
C++Gabor变换绝对无错版本下载链接:http://www.kuaipan.cn/file/id_61230372326735894.html
matlab变换绝对无错版本下载链接:http://www.kuaipan.cn/file/id_61230372326735901.html
C++网络下载版本:http://www.kuaipan.cn/file/id_61230372326735902.html
C++模拟matlab版本,暂时结果有出入:http://www.kuaipan.cn/file/id_61230372326735904.html
由于Gabor变换的窗口大,卷积次数多,导致速度过慢,各位有改进速度的办法时,敬请留言,谢谢!