各种二进制特征提取算子(ORB 、BRIEF 、 FREAK、 BRISK)

这篇博客探讨了四种二进制特征提取算子:ORB、BRIEF、FREAK和BRISK。ORB是对BRIEF的改进,通过FAST检测特征点并计算主方向以实现旋转不变性,同时提高抗噪声能力。FREAK受到人眼视网膜结构启发,提供了一种新的采样策略。BRISK则增强了旋转不变性、尺度不变性和噪声鲁棒性。文章提供了相关论文、代码和演示视频链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

各种特征提取算子

1  ORBORientedBrief):

论文Ethan Rublee and Vincent Rabaud and KurtKonolige and Gary Bradski, ORB:an efficient alternative to SIFT or SURF.点击下载论文

理论参考:http://www.cnblogs.com/scnucs/archive/2011/12/20/2294189.html

代码实现效果:http://blog.csdn.net/merlin_q/article/details/7026375

2 BriefBinary Robust Independent Elementary Features

EPFLCalonderECCV2010上提出的。主要思路就是在特征点附近随机选取若干点对,将这些点对的灰度值的大小,组合成一个二进制串,并将这个二进制串作为该特征点的特征描述子。详细算法描述参考如下论文:

Calonder M., Lepetit V., Strecha C., Fua P.: BRIEF:Binary Robust Independent Elementary Features. ECCV 2010

开源代码:这里。实现效果:http://blog.csdn.net/yangtrees/article/details/7533988

注:在BRIEF eccv2010的文章中,BRIEF描述子中的每一位是由随机选取的两个像素点做二进制比较得来的。文章同样提到,在此之前,需要选取合适的gaussian kernel对图像做平滑处理。(为什么要强调这一点,因为下述的ORB对此作了改进。)

BRIEF的优点在于速度,缺点也相当明显:

1:不具备旋转不变性。

2:对噪声敏感

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值