各种特征提取算子
1 ORB(ORientedBrief):
论文Ethan Rublee and Vincent Rabaud and KurtKonolige and Gary Bradski, ORB:an efficient alternative to SIFT or SURF.点击下载论文
理论参考:http://www.cnblogs.com/scnucs/archive/2011/12/20/2294189.html
代码实现效果:http://blog.csdn.net/merlin_q/article/details/7026375
2 Brief(Binary Robust Independent Elementary Features)
由EPFL的Calonder在ECCV2010上提出的。主要思路就是在特征点附近随机选取若干点对,将这些点对的灰度值的大小,组合成一个二进制串,并将这个二进制串作为该特征点的特征描述子。详细算法描述参考如下论文:
开源代码:这里。实现效果:http://blog.csdn.net/yangtrees/article/details/7533988
注:在BRIEF eccv2010的文章中,BRIEF描述子中的每一位是由随机选取的两个像素点做二进制比较得来的。文章同样提到,在此之前,需要选取合适的gaussian kernel对图像做平滑处理。(为什么要强调这一点,因为下述的ORB对此作了改进。)
BRIEF的优点在于速度,缺点也相当明显:
1:不具备旋转不变性。
2:对噪声敏感