排序:
默认
按更新时间
按访问量

支持向量机与SMO优化算法

1 算法概述 1.1 工作原理 类似于感知机,用一个分离超平面将正负类分开,不同之处在于,感知机只是要求分开正负类,而支持向量机要求找出分离间隔最大的超平面。 1.2 三要素 模型:超平面分类决策模型 策略:分类间隔最大化、合页损失函数最小化 算法:序列最小化算法(SMO) 1.3 线性可分与硬间...

2017-08-18 17:03:04

阅读数:303

评论数:0

决策树算法与不同的剪枝方法

1 问题引入 夏天快要过去,在酷热难耐的夏天,很多人都会选择在街边买几个西瓜回去解渴,有经验的长辈可以根据瓜的色泽、敲声、根蒂挑选出熟了的西瓜。那么我们是否可以根据长辈的经验总结出一套规则,建立一个完整的系统,自动的分析一个瓜是生瓜还是熟瓜。此时我们就可以使用机器学习算法决策树来构建这么个系统。 ...

2017-08-15 17:10:46

阅读数:973

评论数:0

线性链条件随机场简介

1 算法概述 1.1 马尔可夫性 (1)成对马尔可夫性:u,v是无向图中的两个没有边连接的结点,分别对应随机变量Yu,Yv,其他结点为O,对应随机变量为Yo,在给定随机变量组Yo的情况下,Yu和Yv是独立的。P(Yu,Yv|Yo)=P(Yu|Yo) P(Yv|Yo) (2)局部马尔可夫性:w和v是...

2017-08-23 11:15:31

阅读数:821

评论数:0

隐马尔可夫模型

1 模型概述 1.1 基本概念 隐马尔可夫模型是关于时序的模型。描述由一个隐藏的马尔科夫链随机生成不可观测的状态随机序列,在由各个状态生成一个观测而产生观测随机序列的过程。 1.2 三要素 (1)初始状态概率向量π:初始状态序列各个状态出现的概率 (2)状态转移概率矩阵A:从某一个状态转移到另一个...

2017-08-22 16:38:26

阅读数:367

评论数:0

PCA和SVD降维

1 问题引入 前边几章我们学习了很多机器学习的算法,它们在小规模数据上都很有效,但在实际生活中,我们的数据集可能是巨大的,在大规模、多维度数据上运行算法效果往往没有那么好,原因之一是数据的维度太大,有些特征可能对我们的算法决策没有太大影响,或是一些噪声产生干扰。本章我们会提前对数据进行降维处理,只...

2017-08-22 11:01:34

阅读数:452

评论数:0

Apriori关联分析与FP-growth挖掘频繁项集

1 问题引入 在去杂货店买东西的过程,实际上包含了机器学习的应用,这包括物品的展示方式、优惠券等。通过查看哪些商品经常被一起购买,商店可以了解用户的购买习惯,然后将经常被一起购买的物品摆放在一起,有助于商品的售卖。从大规模数据集中寻找物品建的隐含关系被称作关联分析。但是寻找物品不同的组合是一项十分...

2017-08-21 21:48:25

阅读数:266

评论数:0

k-means聚类算法与局部最优解

1 算法概述 1.1 无监督学习 本章算法区别于之前的机器学习算法,因为k-means算法属于无监督算法。监督学习的意思是所给的训练数据都带有标签,如类别等,我们在训练算法时,要考虑预测的结果是否拟合了训练数据中的标签,即好像受其监督一样,而无监督学习与监督学习的区别就在此,无监督学习的数据没...

2017-08-21 20:10:26

阅读数:3284

评论数:0

线性回归算法和一些技巧

1 基本概念 1.1 工作原理 做线性回归时,我们通常会使用“普通最小二乘法”,即将目标函数定为平方误差 ,对w求导,令其为零得 这是当前可以估计出的w的最优解,即回归方程的参数。 2.1 局部加权线性回归 线性回归的一个问题是可能出现欠拟合现象(测试误差高),因为它求的是最小均方误差的无偏估...

2017-08-21 15:16:34

阅读数:361

评论数:0

AdaBoost元算法与提升树

1 问题引入 1.1 强学习与弱学习 提升方法的思想是,对于一个复杂任务,多个专家综合的判断所得出的结果要比一个专家号,即三个臭皮匠赛过诸葛亮的道理。弱学习算法是指学习的正确率比随机猜测略好,强学习算法不仅可以学习,还能得到很高正确率。经学者证明,强可学习和弱可学习是等价的,即同时成立。所以我们的...

2017-08-19 16:34:39

阅读数:194

评论数:0

感知机算法(SVM简化版)

1 算法概述 1.1 工作原理 感知机是二类分类线性模型,在特征空间中,用一个超平面将正类、负类分离,我们所要做的就是求得这个超平面。使用指示函数sign作为输入到输出的映射,sign(w·x+b)。 1.2 三要素 模型:分离超平面决策模型 策略:误分类点到超平面的总距离(损失函数) 算法:随机...

2017-08-18 14:58:24

阅读数:89

评论数:0

逻辑斯谛回归与最大熵分类模型

1 逻辑斯谛算法概述 1.1 工作原理 逻辑斯谛是一种最优化算法。根据现有数据对分类边界线建立回归公式,相当于找出一些拟合参数,将两类数据尽可能的分开。为了实现回归分类,我们给每个特征分配一个回归系数,然后把所有结果相加,为了能让这个结果可以表示分类,我们另外使用一个阶跃函数sigmoid,将结果...

2017-08-17 21:28:36

阅读数:355

评论数:0

朴素贝叶斯算法

1 问题引入 在前两章的分类器,我们往往会要求分类器给出明确的分类,不过,分类器有时也会产生错误的结果,这时可以要求分类器给出一个最可能的猜测结果,同时给出这种猜测的概率估计值。 2 算法概述 2.1 工作原理 首先朴素贝叶斯法一句贝叶斯准则计算条件概率。P(c|x) = P(x|c)P(c) /...

2017-08-16 21:00:32

阅读数:149

评论数:0

k-近邻算法与kd树优化

1 问题引入 最近随着战狼2的口碑不断上涨,票房也屡屡创下纪录,截止目前,战狼2 的票房已经突破40亿,登顶华语票房冠军,但我想关注的不是票房,而是战狼2究竟是一部什么类型的电影,很多人可能会说,这明显是一部动作片啊,那么问题来了,为什么大部分人觉得战狼2是一部动作片,而不是爱情片、恐怖片。其实他...

2017-08-14 17:19:38

阅读数:295

评论数:0

机器学习的统计方法解释

统计学习方法三要素 机器学习实际上用到了很多统计学的知识。按Tom Mitchell的话说,对于某类任务T和性能度量P,如果计算机程序在T上以P衡量的性能随着经验E而自我完善,那么就称这个计算机程序从经验E学习。那么计算机如何通过经验E完善自我呢?答案就是统计学习的方法。 统计学习从数据出发,提取...

2017-08-14 11:08:03

阅读数:142

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭