约瑟夫问题(Java实现)

版权声明:本文为博主原创文章,欢迎读者评论,指出不足,若感觉写的不错,可以转载分享。 https://blog.csdn.net/u013255737/article/details/52304263

一、简介

约瑟夫问题(有时也称为约瑟夫斯置换,是一个出现在计算机科学和数学中的问题。在计算机编程的算法中,类似问题又称为约瑟夫环。又称“丢手绢问题”.)

例子:
len个人围成一个圈,玩丢手绢游戏。从第k个人开始,从1开始数数,当数到m时,数m的人就退出圈子,当圈子只剩下一个人为止。

问题分析与算法设计

约瑟夫问题并不难,但求解的方法很多;题目的变化形式也很多。这里给出一种实现方法。
题目中len个人围成一圈,因而启发我们用一个循环的链来表示,可以使用结构数组来构成一个循环链。结构中有两个成员,其一为指向第一个孩子的头节点,另一个为作为判断的节点temp(负责跑龙套)。

具体代码如下:


    package demo11;

     /**
           * 约瑟夫问题, 化为丢手绢
           * 
           * @author tianq 思路:建立一个Child类 一个循环列表类CyclLink
           */
    public class demo11 {

    public static void main(String[] args) {
        CyclLink cyclink = new CyclLink();
        cyclink.setLen(15);
        cyclink.createLink();
        cyclink.setK(2);
        cyclink.setM(2);
        cyclink.show();
        cyclink.play();
    }
    }

    // 先建立一个孩子类
    class Child {
    // 孩子的标识
    int no;
    Child nextChild;// 指向下一个孩子

    public Child(int no) {
        // 构造函数给孩子一个id
        this.no = no;
    }
    }

    class CyclLink {
    // 先定义一个指向链表第一个小孩的引用
    // 指向第一个小孩的引用,不能动
    Child firstChild = null;
    Child temp = null;
    int len = 0;// 表示共有几个小孩
    int k = 0;  //开始的孩子
    int m = 0;  //数到几推出

    // 设置m
    public void setM(int m) {
        this.m = m;
    }

    // 设置链表的大小
    public void setLen(int len)

    {
        this.len = len;
    }

    // 设置从第几个人开始数数
    public void setK(int k) {
        this.k = k;
    }

    // 开始play
    public void play() {
        Child temp = this.firstChild;
        // 1.先找到开始数数的人
        for (int i = 1; i < k; i++) {
            temp = temp.nextChild;
        }
        while (this.len != 1) {
            // 2.数m下
            for (int j = 1; j < m; j++) {
                temp = temp.nextChild;
            }
            // 找到要出圈的前一个小孩
            Child temp2 = temp;
            while (temp2.nextChild != temp) {
                temp2 = temp2.nextChild;
            }
            // 3.将数到m的小孩,退出
            temp2.nextChild = temp.nextChild;
            // 让temp指向下一个数数的小孩
            temp = temp.nextChild;
            // this.show();
            this.len--;
        }

        // 最后一个小孩
        System.out.println("最后出圈" + temp.no);
    }

    // 初始化环形链表
    public void createLink() {
        for (int i = 1; i <= len; i++) {
            if (i == 1) {
                // 创建第一个小孩
                Child ch = new Child(i);
                this.firstChild = ch;
                this.temp = ch;
            } else {
                if (i == len) {
                    // 创建第一个小孩
                    Child ch = new Child(i);
                    temp.nextChild = ch;
                    temp = ch;
                    temp.nextChild = this.firstChild;
                } else {
                    // 继续创建小孩
                    Child ch = new Child(i);
                    temp.nextChild = ch;
                    temp = ch;
                }
            }
        }
    }

    // 打印该环形链表
    public void show() {
        Child temp = this.firstChild;
        do {
            System.out.print(temp.no + " ");
            temp = temp.nextChild;
        } while (temp != this.firstChild);
    }
    }
阅读更多
换一批

没有更多推荐了,返回首页