Dynamic-SLAM: Semantic monocular visual localization and mapping based on deep learning

Dynamic-SLAM: Semantic monocular visual localization and mapping based on deep learning in dynamic environment

在这里插入图片描述

漏检补偿算法——提高SSD的召回率

首先基于卷积神经网络,构造一个联合先验知识的SSD目标检测器,在语义层检测新检测线程中的动态目标;然后,针对现有SSD目标检测网络的召回率较低的问题,提出了一种基于相邻帧速度不变性的漏检补偿算法,大大提高了检测的召回率

在这里插入图片描述

在这里插入图片描述

SSD会输出检测物体的list,那么遍历当前帧中上一帧出现过得物体list,预测这些物体在当前帧的bounding box位置,再遍历当前帧所有的bounding box是否有被预测框包含,如果有则说明在这一帧被检测到了,如果没有表示没有检测到,那么就把这个物

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值