1. HBase读写流程
上图是RegionServer数据存储关系图。上文提到,HBase使用MemStore和StoreFile存储对表的更新。数据在更新时首先写入HLog和MemStore。MemStore中的数据是排序的,当MemStore累计到一定阈值时,就会创建一个新的MemStore,并且将老的MemStore添加到Flush队列,由单独的线程Flush到磁盘上,成为一个StoreFile。与此同时,系统会在Zookeeper中记录一个CheckPoint,表示这个时刻之前的数据变更已经持久化了。当系统出现意外时,可能导致MemStore中的数据丢失,此时使用HLog来恢复CheckPoint之后的数据。
StoreFile是只读的,一旦创建后就不可以再修改。因此Hbase的更新其实是不断追加的操作。当一个Store中的StoreFile达到一定阈值后,就会进行一次合并操作,将对同一个key的修改合并到一起,形成一个大的StoreFile。当StoreFile的大小达到一定阈值后,又会对 StoreFile进行切分操作,等分为两个StoreFile。
1.1 写操作流程
(1) Client通过Zookeeper的调度,向RegionServer发出写数据请求,在Region中写数据。
(2) 数据被写入Region的MemStore,直到MemStore达到预设阈值。
(3) MemStore中的数据被Flush成一个StoreFile。
(4) 随着StoreFile文件的不断增多,当其数量增长到一定阈值后,触发Compact合并操作,将多个StoreFile合并成一个StoreFile,同时进行版本合并和数据删除。
(5) StoreFiles通过不断的Compact合并操作,逐步形成越来越大的StoreFile。
(6) 单个StoreFile大小超过一定阈值后,触发Split操作,把当前Region Split成2个新的Region。父Region会下线,新Split出的2个子Region会被HMaster分配到相应的RegionServer上,使得原先1个Region的压力得以分流到2个Region上。
可以看出HBase只有增添数据,所有的更新和删除操作都是在后续的Compact历程中举行的,使得用户的写操作只要进入内存就可以立刻返回,实现了HBase I/O的高性能。
1.2 读操作流程
(1) Client访问Zookeeper,查找-ROOT-表,获取.META.表信息。
(2) 从.META.表查找,获取存放目标数据的Region信息,从而找到对应的RegionServer。
(3) 通过RegionServer获取需要查找的数据。
(4) Regionserver的内存分为MemStore和BlockCache两部分,MemStore主要用于写数据,BlockCache主要用于读数据。读请求先到MemStore中查数据,查不到就到BlockCache中查,再查不到就会到StoreFile上读,并把读的结果放入BlockCache。
寻址过程:client–>Zookeeper–>-ROOT-表–>META表–>RegionServer–>Region–>client
HBase中有两个特殊的表:-ROOT-
和.META.
。
2.ROOT表和META表
2.1 -ROOT-表结构
HBase的用-ROOT-表来记录.META.的Region信息,就和.META.记录用户表的Region信息一模一样。-ROOT-只会有一个Region。
这么一来Client端就需要先去访问-ROOT-表。所以需要知道管理-ROOT-表的RegionServer的地址。这个地址被存在ZooKeeper中。默认的路径是:
/hbase/root-region-server
2.2 .META.表结构
2.3 两个表的关系
HBase的所有Region元数据被存储在.META.表中2.1,随着Region的增多,.META.表中的数据也会增大,并分裂成多个新的Region。为了定位.META.表中各个Region的位置,把.META.表中所有Region的元数据保存在-ROOT-表中,最后由Zookeeper记录-ROOT-表的位置信息。所有客户端访问用户数据前,需要首先访问Zookeeper获得-ROOT-的位置,然后访问-ROOT-表获得.META.表的位置,最后根据.META.表中的信息确定用户数据存放的位置,如下图所示。
-ROOT-表永远不会被分割,它只有一个Region,这样可以保证最多只需要三次跳转就可以定位任意一个Region。为了加快访问速度,.META.表的所有Region全部保存在内存中。客户端会将查询过的位置信息缓存起来,且缓存不会主动失效。如果客户端根据缓存信息还访问不到数据,则询问相关.META.表的Region服务器,试图获取数据的位置,如果还是失败,则询问-ROOT-表相关的.META.表在哪里。最后,如果前面的信息全部失效,则通过ZooKeeper重新定位Region的信息。所以如果客户端上的缓存全部是失效,则需要进行6次网络来回,才能定位到正确的Region。
作者:liuzx32
链接:https://www.jianshu.com/p/c4ed9792ecc2
region定位原理
在HBase中,大部分的操作都是在RegionServer完成的,Client端想要插入,删除,查询数据都需要先找到相应的RegionServer。什么叫相应的RegionServer?就是管理你要操作的那个Region的RegionServer。Client本身并不知道哪个RegionServer管理哪个Region,那么它是如何找到相应的RegionServer的?本文就是在研究源码的基础上揭秘这个过程。
在前面的文章“HBase存储架构”中我们已经讨论了HBase基本的存储架构。在此基础上我们引入两个特殊的概念:-ROOT-和.META.。这是什么?它们是HBase的两张内置表,从存储结构和操作方法的角度来说,它们和其他HBase的表没有任何区别,你可以认为这就是两张普通的表,对于普通表的操作对它们都适用。它们与众不同的地方是HBase用它们来存贮一个重要的系统信息——Region的分布情况以及每个Region的详细信息。
好了,既然我们前面说到-ROOT-和.META.可以被看作是两张普通的表,那么它们和其他表一样就应该有自己的表结构。没错,它们有自己的表结构,并且这两张表的表结构是相同的,在分析源码之后我将这个表结构大致的画了出来:
-ROOT-和.META.表结构
我们来仔细分析一下这个结构,每条Row记录了一个Region的信息。
首先是RowKey,RowKey由三部分组成:TableName, StartKey 和 TimeStamp。RowKey存储的内容我们又称之为Region的Name。哦,还记得吗?我们在前面的文章中提到的,用来存放Region的文件夹的名字是RegionName的Hash值,因为RegionName可能包含某些非法字符。现在你应该知道为什么RegionName会包含非法字符了吧,因为StartKey是被允许包含任何值的。将组成RowKey的三个部分用逗号连接就构成了整个RowKey,这里TimeStamp使用十进制的数字字符串来表示的。这里有一个RowKey的例子:
Table1,RK10000,12345678
然后是表中最主要的Family:info,info里面包含三个Column:regioninfo, server, serverstartcode。其中regioninfo就是Region的详细信息,包括StartKey, EndKey 以及每个Family的信息等等。server存储的就是管理这个Region的RegionServer的地址。
所以当Region被拆分、合并或者重新分配的时候,都需要来修改这张表的内容。
到目前为止我们已经学习了必须的背景知识,下面我们要正式开始介绍Client端寻找RegionServer的整个过程。我打算用一个假想的例子来学习这个过程,因此我先构建了假想的-ROOT-表和.META.表。
我们先来看.META.表,假设HBase中只有两张用户表:Table1和Table2,Table1非常大,被划分成了很多Region,因此在.META.表中有很多条Row用来记录这些Region。而Table2很小,只是被划分成了两个Region,因此在.META.中只有两条Row用来记录。这个表的内容看上去是这个样子的:
.META.行记录结构
现在假设我们要从Table2里面插寻一条RowKey是RK10000的数据。那么我们应该遵循以下步骤:
1. 从.META.表里面查询哪个Region包含这条数据。
2. 获取管理这个Region的RegionServer地址。
3. 连接这个RegionServer, 查到这条数据。
好,我们先来第一步。问题是.META.也是一张普通的表,我们需要先知道哪个RegionServer管理了.META.表,怎么办?有一个方法,我们把管理.META.表的RegionServer的地址放到ZooKeeper上面不久行了,这样大家都知道了谁在管理.META.。
貌似问题解决了,但对于这个例子我们遇到了一个新问题。因为Table1实在太大了,它的Region实在太多了,.META.为了存储这些Region信息,花费了大量的空间,自己也需要划分成多个Region。这就意味着可能有多个RegionServer在管理.META.。怎么办?在ZooKeeper里面存储所有管理.META.的RegionServer地址让Client自己去遍历?HBase并不是这么做的。
HBase的做法是用另外一个表来记录.META.的Region信息,就和.META.记录用户表的Region信息一模一样。这个表就是-ROOT-表。这也解释了为什么-ROOT-和.META.拥有相同的表结构,因为他们的原理是一模一样的。
假设.META.表被分成了两个Region,那么-ROOT-的内容看上去大概是这个样子的:
-ROOT-行记录结构
这么一来Client端就需要先去访问-ROOT-表。所以需要知道管理-ROOT-表的RegionServer的地址。这个地址被存在ZooKeeper中。默认的路径是:
/hbase/root-region-server
等等,如果-ROOT-表太大了,要被分成多个Region怎么办?嘿嘿,HBase认为-ROOT-表不会大到那个程度,因此-ROOT-只会有一个Region,这个Region的信息也是被存在HBase内部的。
现在让我们从头来过,我们要查询Table2中RowKey是RK10000的数据。整个路由过程的主要代码在org.apache.hadoop.hbase.client.HConnectionManager.TableServers中:
private HRegionLocation locateRegion(final byte[] tableName,
final byte[] row, boolean useCache) throws IOException {
if (tableName == null || tableName.length == 0) {
throw new IllegalArgumentException("table name cannot be null or zero length");
}
if (Bytes.equals(tableName, ROOT_TABLE_NAME)) {
synchronized (rootRegionLock) {
// This block guards against two threads trying to find the root
// region at the same time. One will go do the find while the
// second waits. The second thread will not do find.
if (!useCache || rootRegionLocation == null) {
this.rootRegionLocation = locateRootRegion();
}
return this.rootRegionLocation;
}
} else if (Bytes.equals(tableName, META_TABLE_NAME)) {
return locateRegionInMeta(ROOT_TABLE_NAME, tableName, row, useCache, metaRegionLock);
} else {
// Region not in the cache – have to go to the meta RS
return locateRegionInMeta(META_TABLE_NAME, tableName, row, useCache, userRegionLock);
}
}
这是一个递归调用的过程:
获取Table2,RowKey为RK10000的RegionServer
=> 获取.META.,RowKey为Table2,RK10000, 99999999999999的RegionServer
=> 获取-ROOT-,RowKey为.META.,Table2,RK10000,99999999999999,99999999999999的RegionServer
=> 获取-ROOT-的RegionServer => 从ZooKeeper得到-ROOT-的RegionServer
=> 从-ROOT-表中查到RowKey最接近(小于) .META.,Table2,RK10000,99999999999999,99999999999999的一条Row,并得到.META.的RegionServer
=> 从.META.表中查到RowKey最接近(小于)Table2,RK10000, 99999999999999的一条Row,并得到Table2的RegionServer => 从Table2中查到RK10000的Row
不是很难理解。
最后要提醒大家注意两件事情:
1. 在整个路由过程中并没有涉及到MasterServer,也就是说HBase日常的数据操作并不需要MasterServer,不会造成MasterServer的负担。
2. Client端并不会每次数据操作都做这整个路由过程,很多数据都会被Cache起来。至于如何Cache,则不在本文的讨论范围之内。