流模式一般用于处理连续的无界数据;
批模式一般用于处理已知输入、不会连续运行的任务;
不管流模式亦或者是批模式,采取统一的处理方式(大部分的API两者都适用);如果适用批(BACH)模式,Flink 可以对有边界作业进行额外的优化。例如,可以使用不同的关联(join)/ 聚合(aggregation)策略、不同 shuffle 实现来提高任务调度和故障恢复的效率
配置执行模式:
STREAMING: 经典 DataStream 执行模式(默认)BATCH: 在 DataStream API 上进行批量式执行(本地测试可以再代码中写死。生产环境一般不建议写死再代码中,应该再任务运行是,动态添加)-
$ bin/flink run -Dexecution.runtime-mode=BATCH <jarFile> - 本地测试:
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setRuntimeMode(RuntimeExecutionMode.BATCH); AUTOMATIC: 让系统根据数据源的边界性来决定
802

被折叠的 条评论
为什么被折叠?



