UVA679 Dropping Balls【分治】

A number of K balls are dropped one by one from the root of a fully binary tree structure FBT. Each time the ball being dropped first visits a non-terminal node. It then keeps moving down, either follows the path of the left subtree, or follows the path of the right subtree, until it stops at one of the leaf nodes of FBT. To determine a ball’s moving direction a flag is set up in every non-terminal node with two values, either false or true. Initially, all of the flags are false. When visiting a non-terminal node if the flag’s current value at this node is false, then the ball will first switch this flag’s value, i.e., from the false to the true, and then follow the left subtree of this node to keep moving down. Otherwise, it will also switch this flag’s value, i.e., from the true to the false, but will follow the right subtree of this node to keep moving down. Furthermore, all nodes of FBT are sequentially numbered, starting at 1 with nodes on depth 1, and then those on depth 2, and so on. Nodes on any depth are numbered from left to right.
    For example, Fig. 1 represents a fully binary tree of maximum depth 4 with the node numbers 1, 2, 3, …, 15. Since all of the flags are initially set to be false, the first ball being dropped will switch flag’s values at node 1, node 2, and node 4 before it finally stops at position 8. The second ball being dropped will switch flag’s values at node 1, node 3, and node 6, and stop at position 12. Obviously, the third ball being dropped will switch flag’s values at node 1, node 2, and node 5 before it stops at position 10.
在这里插入图片描述
Fig. 1: An example of FBT with the maximum depth 4 and sequential node numbers.
    Now consider a number of test cases where two values will be given for each test. The first value is D, the maximum depth of FBT, and the second one is I, the I-th ball being dropped. You may assume the value of I will not exceed the total number of leaf nodes for the given FBT.
    Please write a program to determine the stop position P for each test case.
    For each test cases the range of two parameters D and I is as below:
2 ≤ D ≤ 20, and 1 ≤ I ≤ 524288.
Input
Contains l + 2 lines.
Line 1 l the number of test cases
Line 2 D1 I1 test case #1, two decimal numbers that are separated by one blank

Line k + 1 Dk Ik test case #k
Line l + 1 Dl Il test case #l
Line l + 2 -1 a constant ‘-1’ representing the end of the input file
Output
Contains l lines.
Line 1 the stop position P for the test case #1

Line k the stop position P for the test case #k

Line l the stop position P for the test case #l
Sample Input
5
4 2
3 4
10 1
2 2
8 128
-1
Sample Output
12
7
512
3
255

问题链接UVA679 Dropping Balls
问题简述:给定一棵深度为D的满二叉树和I个球,开始时所有的结点都是关闭的,如果结点是关闭的则球向左走,否则向右走,每个结点被球接触后节点开关被打开。
问题分析:用分治法解决。
程序说明:(略)
参考链接:(略)
题记:(略)

AC的C++语言程序如下:

/* UVA679 Dropping Balls */

#include <bits/stdc++.h>

using namespace std;

int main()
{
    int t, d, i;
    scanf("%d", &t);
    while(t--) {
        scanf("%d%d", &d, &i);
        int ans = 1;
        for(int j = 0; j < d - 1; j++)
            if(i % 2) {
                ans <<= 1;
                i = (i + 1) >> 1;
            } else {
                ans = (ans << 1) + 1;
                i >>= 1;
            }
        printf("%d\n", ans);
    }
    scanf("%d", &t);

    return 0;
}
发布了2257 篇原创文章 · 获赞 2367 · 访问量 263万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 代码科技 设计师: Amelia_0503

分享到微信朋友圈

×

扫一扫,手机浏览