GitPuk基础到实践,如何安全有效的保障代码质量

GitPuk是一款国产开源免费的代码管理工具,工具轻量、简洁易用,本文将介绍如何通过代码提交规则检查、代码评审、代码扫描等功能,全方面的保障代码质量。

1、代码提交规则检查

可通过代码提交规则设置来检查提交代码是否符合规范、规约,从而有效保障代码质量。

1,首先进入你所创建的代码库中,在左下角点击设置

2,进入设置点击仓库配置后,打开推送规则设置

3,点击新建推送规则即可设置规则限制,这样推送时即可间接管控代码质量

2、合并评审

代码合并评审已成为保障代码质量的核心环节,那如何在合并评审中进行代码质量的管控呢?

2.1 创建评审

1.新建评审时两个分支没有可合并的差异则不能进行合并

2.在新建合并请求时可在创建页面详细查看,提交记录与文件改动

2.2 合并评审

1.在创建合并评审后,可在页面添加对应该项目的管理者为评审,来进行人工的评审管控

2.人工评审通过后即可点击通过,GitPuk同时支持四种合并方式

合并分支四种支持方法:

合并分类

描述

创建一个合并节点

会创建合并提交记录,源分支和目标分支的提交记录不变

Squash合并

将合并请求中的提交记录压缩成一条,然后添加到目标分支

Rebase合并

变基合并,不创建新的合并请求,源分支提交逐一编辑到目标分支

fast-forward-only合并

不创建新的合并请求记录

3、代码扫描

下面介绍如何利用代码扫描来检查代码中存在的问题、安全漏洞及代码风格、规范是否符合公司要求。

如下将介绍如何通过sourcefare代码扫描工具集成来进行代码扫描

3.1 sourcefare集成

1.进入GitPuk后点击设置来到集成与开放,点击系统集成中的sourcefare输入对应内容来进行集成,sourcefare则是同理。

3.2 配置并扫描代码

1,在SourceFare集成GitPuk绑定后,创建GitPuk要扫描的该仓库

2,创建成功后,可点击右上角扫描按钮进行扫描,等到扫描结束后即可查看

3,扫描后,可回到GitPuk中在代码扫描功能中点击关联扫描计划,关联后直接点击可查看当前代码扫描后的细节报告,也可直接在SourceFare中进行查看

【RIS 辅助的 THz 混合场波束斜视下的信道估计与定位】在混合场波束斜视效应下,利用太赫兹超大可重构智能表面感知用户信道与位置(Matlab代码实现)内容概要:本文围绕“IS 辅助的 THz 混合场波束斜视下的信道估计与定位”展开,重点研究在太赫兹(THz)通信系统中,由于混合近场与远场共存导致的波束斜视效应下,如何利用超大可重构智能表面(RIS)实现对用户信道状态信息和位置的联合感知与精确估计。文中提出了一种基于RIS调控的信道参数估计算法,通过优化RIS相移矩阵提升信道分辨率,并结合信号到达角(AoA)、到达时间(ToA)等信息实现高精度定位。该方法在Matlab平台上进行了仿真验证,复现了SCI一区论文的核心成果,展示了其在下一代高频通信系统中的应用潜力。; 适合人群:具备通信工程、信号处理或电子信息相关背景,熟悉Matlab仿真,从事太赫兹通信、智能反射面或无线定位方向研究的研究生、科研人员及工程师。; 使用场景及目标:① 理解太赫兹通信中混合场域波束斜视问题的成因与影响;② 掌握基于RIS的信道估计与用户定位联合实现的技术路径;③ 学习并复现高水平SCI论文中的算法设计与仿真方法,支撑学术研究或工程原型开发; 阅读建议:此资源以Matlab代码实现为核心,强调理论与实践结合,建议读者在理解波束成形、信道建模和参数估计算法的基础上,动手运行和调试代码,深入掌握RIS在高频通信感知一体化中的关键技术细节。
内容概要:该文档为一段用于Google Earth Engine(GEE)平台的JavaScript代码脚本,旨在对伯利兹(Belize)地区2023年的土地覆盖进行监督分类。脚本加载了Landsat-9影像数据和多个辅助数据集,包括训练样本、区域边界、森林变化掩膜等,并对影像进行裁剪与重投影处理。基于三组不同版本的训练数据,采用多种分类器(如决策树、梯度提升树、最小距离法、支持向量机、随机森林等)对影像进行土地覆盖分类,生成多套分类结果。所有结果在三个并列地图视图中可视化展示,并叠加流域、行政区划、保护区和国际边界等参考图层,便于对比分析。最终界面以水平布局呈现三个地图面板及标题、图例和数据来源信息。; 适合人群:具备遥感与地理信息系统(GIS)基础知识,熟悉Google Earth Engine平台操作的科研人员或技术人员;适合从事土地利用/覆盖分类、环境监测等相关领域的研究生或专业从业人员。; 使用场景及目标:①比较不同分类算法(如CART、RF、SVM等)在相同区域和数据条件下的分类效果;②评估不同训练样本集对分类精度的影响;③实现大范围、高分辨率的土地覆盖制图与可视化分析;④支持生态环境评估、国土规划或气候变化研究中的空间数据分析需求。; 阅读建议:此资源为完整可运行的GEE脚本,建议在Earth Engine平台上实际加载运行,结合代码逐段理解数据预处理、分类建模与结果可视化的流程。使用者可根据自身需求替换训练样本或扩展分类器类型,进一步优化分类方案。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值