场论 梯度 旋度 散度

梯度(grad)▽f

 

设二元函数  在平面区域D上具有一阶连续偏导数,则对于每一个点P(x,y)都可定出一个向量 ,该函数就称为函数  在点P(x,y)的梯度,记作gradf(x,y)或  ,

     即有:

gradf(x,y)=  =

其中,

  

称为(二维的)向量微分算子或Nabla算子,  。

散度(div)▽·f

散度(divergence)可用于表征空间各点矢量场发散的强弱程度,物理上,散度的意义是场的有源性。当div F>0 ,表示该点有散发通量的正源(发散源);当div F<0 表示该点有吸收通量的负源(洞或汇);当div F=0,表示该点无源。

物理意义:div F描述了通量源的密度

 

对于一个矢量场  而言,散度有两种不同的定义方式。

第一种定义方式和坐标系无关: 

                                                          

第二种定义方式则是在直角坐标系下进行的: 

                                                    

可以证明,在极限存在的情况下,两种定义是等价的。因此也常直接用

由散度的定义可知,

  表示在某点处的单位体积内散发出来的矢量  的通量,所以  描述了通量源的密度

 

举例来说,假设将太空中各个点的热辐射强度向量看做一个向量场,那么某个热辐射源(比如太阳)周边的热辐射强度向量都指向外,说明太阳是不断产生新的热辐射的源头,其散度大于零。

二维平面:

散度可以表示流体运动时单位体积的改变率。简单地说,流体在运动中集中的区域为辐合,运动中发散的区域为辐散。散度值为负时为辐合,此时有利于气旋等对流天气系统的的发展和增强,为正时表示辐散,有利于反气旋等天气系统的发展。

往往,气象学中 应用最多的 是风速  的“水平散度”。水平散度的表达式是:

                                                                       

 

流体力学

散度等于零的矢量场称为无源场或管形场。流体力学中,密度散度为零的流体称为不可压缩流体,也就是说每个微小时间间隔中流入一个微小体元的流体总量都等于在此时间间隔内流出此体元的流体总量。 

不可压缩:

                             ▽·ρV  = 0

对于可压缩的流体,有下述方程成立:

                      

即密度的变化率等于动量的散度。

 

旋度(curl)  

流量沿某一个闭合路径的积分。

记作:

 

 

 

 

 

相关推荐
度、旋度梯度释义(图解版)—(美)H.M.斯彻(H.M.Schey)著 李维伟等译 2015.11出版   《度、旋度梯度释义(图解版)》以内容简明扼要、通俗易懂广受关注和读者好评。第Ⅰ章介绍了一个矢量函数的实例;第Ⅱ章介绍了应用高斯定理求场强、在柱状和球面坐标系中计算度并且介绍了哈密顿算子;第Ⅲ章介绍了路径独立问题、旋度、环路定理、斯托克斯定理、安培环路定理;第Ⅳ章介绍了梯度和应用拉普拉斯方程求电场强度。全书内容结合图形与实例来介绍,以便读者更容易理解。   此书适用于理工科学生作为场论等课程的教材,也可作为相关科研工作者的参考书。 内容简介   《度、旋度梯度释义(图解版)》着重介绍了度,梯度旋度以及与之相关的矢量微积分,并使用图形的方式直观的理解他们的定义以及性质,书中例子多采用,电子,工程领域的实例。可为广大工程技术人员提供相关的参考。全书结合图形与实例以便读者更容易理解。 作者简介   H.M. 斯彻,是罗彻斯特理工学院数学与统计学专业的教授。30年前,他编写的《度、梯度旋度释义》第1版一经问世就以其内容简明扼要、通俗易懂广受关注和好评,随后经过不断的修订、完善,时至今日已经是第4版,可谓是经久不衰。 前言/序言   新版与第3版的不同之处主要有两个方面。第一,增加了一些新的实例。这是采纳了一些学生的意见,他们认为这些例子有助于理解本书和解答习题。我们的目标是增加足够多的有益的实例,同时并不显著增加书的厚度。(两位评论人建议我一点也不增加书的页数,因此,书中没有提供Sr. de Cervantes'问题的解答)   本版和此前版本的第二个主要不同是两个球面角θ,φ角色的转换。之前版本的书中,通常θ作为极坐标角,φ作为方位角,现在,按照更通用的规范对二者掉换,使θ表示方位角,φ表示极坐标角。   我诚挚感谢多年来一直支持我的读者,他们与我的通信为我改进此书提出了很多宝贵的建议。许多建议都在本书中得以采纳,这也是此书经久不衰的重要原因之一。
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页