NC30 数组中未出现的最小正整数
给出一个长度为 n n n 的数组 a r r arr arr,找出未在 a r r arr arr 中出现的最小的正整数。
比如以下几组输入:
- a r r = [ 1 , 2 , 3 , 4 ] arr=[1,2,3,4] arr=[1,2,3,4],答案为 5。
- a r r = [ 2 , 3 , 4 , 5 ] arr=[2,3,4,5] arr=[2,3,4,5],答案为 1。
- a r r = [ − 1 , 4 , 1 , 4 ] arr=[-1,4,1,4] arr=[−1,4,1,4],答案为 2。
方法一:暴力枚举
不难发现,对于长度为 n n n 的 a r r arr arr,最多包含 n n n 个正整数,所以缺失的最小正整数 x x x 必然满足 1 ≤ x ≤ n + 1 1\le x \le n+1 1≤x≤n+1。
一个很直观的思路是:枚举 i ∈ [ 1 , n + 1 ] i∈[1, n+1] i∈[1,n+1],检查 i i i 是否存在于 a r r arr arr 中。
时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( 1 ) O(1) O(1)
class Solution {
public:
int minNumberdisappered(vector<int>& arr) {
int x = -1;
for (int i = 1; i <= arr.size()+1 && anw == -1; i++) {
bool find = false;
for (int j = 0; j < arr.size() && find == false; j++) {
if (arr[j] == i) find = true;
}
if (!find) x = i;
}
return x;
}
};
方法二:哈希
方法一中,每查找一次 i i i 的时间复杂度为 O ( n ) O(n) O(n),考虑借助标记数组优化查找过程。
首先,定义长度为
n
+
1
n+1
n+1 的标记数组
m
a
r
k
mark
mark,并全部初始化为 false
。
m
a
r
k
mark
mark 的含义为:若
m
a
r
k
i
mark_i
marki 为 false
,则说明
i
+
1
i+1
i+1 不存在,反之则存在。
std::vector<bool> mark(arr.size()+1, false);
接下来,遍历 a r r arr arr,并更新 m a r k mark mark,该过程的时间复杂度为 O ( n ) O(n) O(n)。
for (auto d : arr) {
if (1 <= d && d <= arr.size()+1) {
mark[d-1] = true;
}
}
考虑到答案的取值范围为 [ 1 , n + 1 ] [1,n+1] [1,n+1],所以在更新过程中过滤了区间之外的值。这样在保证正确性的前提下,也避免了发生「访问数组越界」的问题。
最后,枚举
i
∈
[
1
,
n
+
1
]
i∈[1,n+1]
i∈[1,n+1],并检查
m
a
r
k
i
−
1
mark_{i-1}
marki−1 是否为 false
。每次检查的时间复杂度为
O
(
1
)
O(1)
O(1),整个检查过程的时间复杂度为
O
(
n
)
O(n)
O(n)。
for (int i = 1; i <= arr.size()+1; i++) {
if (mark[i-1] == false) {
return i;
}
}
整个过程的复杂度为:
- 时间复杂度: O ( n ) O(n) O(n)
- 空间复杂度: O ( n ) O(n) O(n)
完整代码如下:
class Solution {
public:
int minNumberdisappered(vector<int>& arr) {
std::vector<bool> mark(arr.size()+1, false);
for (auto d : arr) {
if (1 <= d && d <= arr.size()+1) {
mark[d-1] = true;
}
}
for (int i = 1; i <= arr.size()+1; i++) {
if (mark[i-1] == false) {
return i;
}
}
return -1;
}
};
方法三:不使用标记数组的哈希
考虑到答案的取值范围为 [ 1 , n + 1 ] [1,n+1] [1,n+1],因此将 a r r arr arr 中不在该区间的元素都置为 n + 2 n+2 n+2 也不会影响正确性。
for (auto &c : arr) {
if (c < 1 || c > arr.size()) {
c = arr.size()+2;
}
}
经过上述处理后, a r r arr arr 中的元素均为正整数,那么可使用「正负」来表示某个数字是否存在:
- a r r i arr_i arri 为负表示数字 i + 1 i+1 i+1 存在于 a r r arr arr 中,反之不存在。
- ∣ a r r i ∣ |arr_i| ∣arri∣,即 a r r i arr_i arri 的绝对值才是 a r r i arr_i arri 真正的值。
接下来,再次遍历 a r r arr arr,并更新 a r r arr arr 中个元素的正负。
for (auto c : arr) {
int ori = abs(c); // 取出真正的值
if (ori != arr.size()+2) {
arr[ori-1] = -abs(arr[ori-1]); // 并将 arr[ori-1]置为负数。
}
}
最后,遍历 a r r arr arr,找出第一个满足 a r r i > 0 arr_i \gt 0 arri>0 的 i i i,则 i + 1 i+1 i+1 即为答案。如果不存在这样的 i i i,则答案为 n + 1 n+1 n+1。
时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( 1 ) O(1) O(1)
class Solution {
public:
int minNumberdisappered(vector<int>& arr) {
for (auto &c : arr) {
if (c < 1 || c > arr.size()) {
c = arr.size()+2;
}
}
for (auto c : arr) {
int ori = abs(c);
if (ori != arr.size()+2) {
arr[ori-1] = -abs(arr[ori-1]);
}
}
for (int i = 0; i < arr.size(); i++) {
if (arr[i] >= 0) {
return i+1;
}
}
return arr.size()+1;
}
};