数组入门练习:数组中未出现的最小正整数

NC30 数组中未出现的最小正整数

给出一个长度为 n n n 的数组 a r r arr arr,找出未在 a r r arr arr 中出现的最小的正整数。

比如以下几组输入:

  • a r r = [ 1 , 2 , 3 , 4 ] arr=[1,2,3,4] arr=[1,2,3,4],答案为 5。
  • a r r = [ 2 , 3 , 4 , 5 ] arr=[2,3,4,5] arr=[2,3,4,5],答案为 1。
  • a r r = [ − 1 , 4 , 1 , 4 ] arr=[-1,4,1,4] arr=[1,4,1,4],答案为 2。

方法一:暴力枚举

不难发现,对于长度为 n n n a r r arr arr,最多包含 n n n 个正整数,所以缺失的最小正整数 x x x 必然满足 1 ≤ x ≤ n + 1 1\le x \le n+1 1xn+1

一个很直观的思路是:枚举 i ∈ [ 1 , n + 1 ] i∈[1, n+1] i[1,n+1],检查 i i i 是否存在于 a r r arr arr 中。

时间复杂度: O ( n 2 ) O(n^2) O(n2)

空间复杂度: O ( 1 ) O(1) O(1)

class Solution {
public:
    int minNumberdisappered(vector<int>& arr) {
        int x = -1;
        for (int i = 1; i <= arr.size()+1 && anw == -1; i++) {
            bool find = false;
            for (int j = 0; j < arr.size() && find == false; j++) {
                if (arr[j] == i) find = true; 
            }
            if (!find) x = i;
        }
        return x;
    }
};

方法二:哈希

方法一中,每查找一次 i i i 的时间复杂度为 O ( n ) O(n) O(n),考虑借助标记数组优化查找过程。

首先,定义长度为 n + 1 n+1 n+1 的标记数组 m a r k mark mark,并全部初始化为 false m a r k mark mark 的含义为:若 m a r k i mark_i markifalse,则说明 i + 1 i+1 i+1 不存在,反之则存在。

std::vector<bool> mark(arr.size()+1, false);

接下来,遍历 a r r arr arr,并更新 m a r k mark mark,该过程的时间复杂度为 O ( n ) O(n) O(n)

for (auto d : arr) {
	if (1 <= d && d <= arr.size()+1) {
		mark[d-1] = true;
	}
}

考虑到答案的取值范围为 [ 1 , n + 1 ] [1,n+1] [1,n+1],所以在更新过程中过滤了区间之外的值。这样在保证正确性的前提下,也避免了发生「访问数组越界」的问题。

最后,枚举 i ∈ [ 1 , n + 1 ] i∈[1,n+1] i[1,n+1],并检查 m a r k i − 1 mark_{i-1} marki1 是否为 false。每次检查的时间复杂度为 O ( 1 ) O(1) O(1),整个检查过程的时间复杂度为 O ( n ) O(n) O(n)

for (int i = 1; i <= arr.size()+1; i++) {
	if (mark[i-1] == false) {
		return i;
	}
}

整个过程的复杂度为:

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n)

完整代码如下:

class Solution {
public:
    int minNumberdisappered(vector<int>& arr) {
        std::vector<bool> mark(arr.size()+1, false);
        
        for (auto d : arr) {
            if (1 <= d && d <= arr.size()+1) {
                mark[d-1] = true;
            }
        }
        
        for (int i = 1; i <= arr.size()+1; i++) {
            if (mark[i-1] == false) {
                return i;
            }
        }
    
        return -1;
    }
};

方法三:不使用标记数组的哈希

考虑到答案的取值范围为 [ 1 , n + 1 ] [1,n+1] [1,n+1],因此将 a r r arr arr 中不在该区间的元素都置为 n + 2 n+2 n+2 也不会影响正确性。

for (auto &c : arr) {
	if (c < 1 || c > arr.size()) {
		c = arr.size()+2;
	}
}

经过上述处理后, a r r arr arr 中的元素均为正整数,那么可使用「正负」来表示某个数字是否存在:

  • a r r i arr_i arri 为负表示数字 i + 1 i+1 i+1 存在于 a r r arr arr 中,反之不存在。
  • ∣ a r r i ∣ |arr_i| arri,即 a r r i arr_i arri 的绝对值才是 a r r i arr_i arri 真正的值。

接下来,再次遍历 a r r arr arr,并更新 a r r arr arr 中个元素的正负。

for (auto c : arr) {
	int ori = abs(c); // 取出真正的值
	if (ori != arr.size()+2) {
		arr[ori-1] = -abs(arr[ori-1]); // 并将 arr[ori-1]置为负数。
	}
}

最后,遍历 a r r arr arr,找出第一个满足 a r r i > 0 arr_i \gt 0 arri>0 i i i,则 i + 1 i+1 i+1 即为答案。如果不存在这样的 i i i,则答案为 n + 1 n+1 n+1

时间复杂度: O ( n ) O(n) O(n)

空间复杂度: O ( 1 ) O(1) O(1)

class Solution {
public:
    int minNumberdisappered(vector<int>& arr) {
        for (auto &c : arr) {
            if (c < 1 || c > arr.size()) {
                c = arr.size()+2;
            }
        }
        for (auto c : arr) {
            int ori = abs(c);
            if (ori != arr.size()+2) {
                arr[ori-1] = -abs(arr[ori-1]);
            }
        }
        for (int i = 0; i < arr.size(); i++) {
            if (arr[i] >= 0) {
                return i+1;
            }
        }
        return arr.size()+1;
    }
};
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值