
【PyTorch深度学习项目实战200例】——基于(Bi)LSTM+CNN文本情感分类 第5例
在LSTM+CNN模型中,首先使用CNN模型对文本进行卷积操作,提取文本的局部特征。然后,将卷积后的结果输入到LSTM模型中,利用LSTM模型的记忆功能,捕捉文本的长期依赖关系。然后,我们在每个卷积层的输出上应用ReLU激活函数,并对每个卷积层的输出进行最大池化。LSTM+CNN是一种常用的文本分类模型,它结合了LSTM和CNN两种神经网络模型的优点,可以有效地提取文本的特征,并对其进行分类。)模型是一种能够捕捉局部特征的卷积神经网络模型,其能够有效地提取文本中的局部信息。









