如果你想使用 PyTorch 进行多卡训练,可以使用 PyTorch 的分布式训练模块 torch.distributed。
首先,你需要设置每个 GPU 的环境变量,以便 PyTorch 可以识别并使用它们。可以使用以下命令:
export CUDA_VISIBLE_DEVICES=0,1,2,3
这将设置使用 GPU 0、1、2 和 3 进行训练。
接下来,你需要初始化分布式后端。PyTorch 支持三种后端:NCCL、Gloo 和 MPI。你可以使用以下命令初始化 NCCL 后端:
torch.distributed.init_process_group(backend='nccl', init_method='env://')
这里使用了环境变量 init_method='env://' 来设置初始化方法,它会自动使用环境变量 MASTER_ADDR 和 MASTER_PORT 来确定主机和端口。你可以根据需要更改这些值。
接下来,你需要将模型和数据划分到不同的进程和 GPU 上。你可以使用 torch.nn.parallel.DistributedDataParallel 类来实现这一点。这个类会自动将模型和数据分发到所有可用的 GPU 上,并在每个 GPU 上运行一个副本。你可以使用以下代码实现:
model = MyModel()
model = torch.nn.parallel.DistributedDataParallel(model)
最后,你需要使用分布式优化器来更新模型参数。你可以使用 t

本文介绍了如何在PyTorch中设置CUDA环境变量以使用多GPU,并通过torch.distributed模块进行分布式训练。重点讲解了初始化分布式后端如NCCL,使用DistributedDataParallel进行模型和数据的分布,以及应用分布式优化器更新参数。
最低0.47元/天 解锁文章
659

被折叠的 条评论
为什么被折叠?



