题目
原题地址: . - 力扣(LeetCode)
给定一个 n × n 的二维矩阵 matrix
表示一个图像。请你将图像顺时针旋转 90 度。
你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。
示例 1:
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]] 输出:[[7,4,1],[8,5,2],[9,6,3]]
示例 2:
输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]] 输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]
数学方法(转置再翻转)
矩阵的转置就是行转列,如下图,第一行转成第一列,第二行转成第二列,转置完翻转每一行就行了,那如何转置呢,就是a[i,j] = a[j,i],就能实现转置的效果
public void rotate(int[][] matrix) {
int n = matrix.length;
// 转置矩阵
for (int i = 0; i < n; i++)
for (int j = i; j < n; j++) {
int tmp = matrix[i][j];
matrix[i][j] = matrix[j][i];
matrix[j][i] = tmp;
}
// 1.翻转行
for (int i = 0; i < matrix.length; i++) {
int start = 0;
int end = matrix[i].length - 1;
while (start < end) {
int temp = matrix[i][start];
matrix[i][start] = matrix[i][end];
matrix[i][end] = temp;
start++;
end--;
}
}
}
效果: