力扣经典题目解析--滑动窗口最大值

文章讨论了如何解决LeetCode上的滑动窗口问题,介绍了暴力法的不足并提出使用双向队列进行优化,以常数时间处理元素进出,实现高效找到滑动窗口中的最大值。
摘要由CSDN通过智能技术生成

原题地址: . - 力扣(LeetCode)

给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。

返回 滑动窗口中的最大值 

示例 1:

输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置                最大值
---------------               -----
[1  3  -1] -3  5  3  6  7       3
 1 [3  -1  -3] 5  3  6  7       3
 1  3 [-1  -3  5] 3  6  7       5
 1  3  -1 [-3  5  3] 6  7       5
 1  3  -1  -3 [5  3  6] 7       6
 1  3  -1  -3  5 [3  6  7]      7

示例 2:

输入:nums = [1], k = 1
输出:[1]

暴力法

这道题相比较其他题目可以说简单易懂,找到滑动窗口中最大值就行了。先定义一个结果数组result,长度是nums.length - k + 1,再确定遍历的数组大小是0到nums.length - k,最后遍历[i,i+k]的窗口,找到最大值存入result中就行了。

public int[] maxSlidingWindow(int[] nums, int k) {
    // 结果数组,存放结果
    int[] result = new int[nums.length - k + 1];
    for (int i = 0; i <= nums.length - k; i++) {
        int max = nums[i];
        for (int j = i; j < i + k; j++) {
            if (nums[j] > max) {
                max = nums[j];
            }
        }
        result[i] = max;
    }
    return result;
}

 但是我们来看下这道题的难度,是困难级别,可想而知不会这么简单

果然跑到40个用例的时候直接超出时间限制了,这时的滑动窗口宽度是26779.

双向队列 

我们发现,窗口在滑动过程中,其实数据发生的变化很小:只有第一个元素被删除、后面又新增一个元素,中间的大量元素是不变的。也就是说,前后两个窗口中,有大量数据是 重叠 的。

[1, 3, -1,] -3, 5, 3, 6, 7

1, [3, -1, -3,] 5, 3, 6, 7

1, 3, [-1, -3, 5,] 3, 6, 7

自然想到,其实可以使用一个 队列 来保存窗口数据:窗口每次滑动,我们就让后面的一个元素(-3)进队,并且让第一个元素(1)出队。进出队列的操作,只要耗费常数时间。

这种场景,可以使用 双向队列(也叫双端队列Dequeue),该数据结构可以从两端以常数时间压入/弹出元素。

在构建双向队列的时候,可以采用删除队尾更小元素的策略,所以,得到的其实就是一个 从大到小排序 的队列。

这样存储的元素,可以认为是遵循“更新更大”原则的。

public int[] maxSlidingWindow1(int[] nums, int k) {
    if (k == 1) return nums;
    // 结果数组,存放结果
    int[] result = new int[nums.length - k + 1];
    Deque<Integer> deque = new ArrayDeque<>();
    // 初始化队列,队列里面记录index
    for (int i = 0; i < k; i++) {
        // 比较将要放入的数与队列最后一个数,如果小于将要放入的数则删除
        // 最后会得到一个从大到小排列的队列
        while (!deque.isEmpty() && nums[i] > nums[deque.getLast()]) {
            deque.removeLast();
        }
        deque.addLast(i);
    }
    // 第一个数最大
    result[0] = nums[deque.getFirst()];
    for (int i = k; i < nums.length; i++) {
        // 判断队列中第一个是否要出窗口
        if (i - k == deque.getFirst()) deque.removeFirst();
        // 入队列
        while (!deque.isEmpty() && nums[i] > nums[deque.getLast()]) {
            deque.removeLast();
        }
        deque.addLast(i);
        result[i - k + 1] = nums[deque.getFirst()];
    }
    return result;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值