| 题号 | 标题 | 题解 | 标签 | 难度 |
|---|---|---|---|---|
| 0001 | 两数之和 | Python | 数组、哈希表 | 简单 |
| 0041 | 缺失的第一个正数 | Python | 数组、哈希表 | 困难 |
| 0128 | 最长连续序列 | Python | 并查集、数组、哈希表 | 中等 |
| 0136 | 只出现一次的数字 | Python | 位运算、数组 | 简单 |
| 0242 | 有效的字母异位词 | Python | 哈希表、字符串、排序 | 简单 |
| 0442 | 数组中重复的数据 | 数组、哈希表 | 中等 | |
| 剑指 Offer 61 | 扑克牌中的顺子 | Python | 数组、排序 | 简单 |
| 0268 | 丢失的数字 | Python | 位运算、数组、哈希表、数学、二分查找、排序 | 简单 |
| 剑指 Offer 03 | 数组中重复的数字 | Python | 数组、哈希表、排序 | 简单 |
两数之和
// 通过哈希表查找数组中值为 target-nums[i]的值,即为那“两个整数”。如果不是,则存储哈希表并继续向后比对。
// 哈希表的作用:提高查询效率,存放下标值
class Solution {
public int[] twoSum(int[] nums, int target) {
Map<Integer,Integer> map = new HashMap<Integer,Integer>();
for(int i = 0 ; i < nums.length ; ++i){
// 判断如果哈希表中存在 target-nums[i]的值,则返回这两个数的下标数组
if(map.containsKey(target-nums[i])){
return new int[]{map.get(target-nums[i]),i};// 之前存入的下标值,现在的下标值。
}
// 如果判断失败,则将当前值和下标存入哈希表
map.put(nums[i],i);
}
// 如果没有找到,说明不存在,返回一个空数组(创建数组要使用new)
return new int[0];
}
}
缺失的第一个正数
class Solution {
// 正常思路:将数组所有的数放入哈希表,随后从 1 开始依次枚举正整数,并判断其是否在哈希表中,时间复杂度为 O(N),空间复杂度为 O(N)
// 原地哈希+哈希表:
// 但是要满足时间复杂度为 O(n) 并且只使用常数级别额外空间,我们可以将当前数组视为哈希表。一个长度为 n 的数组,对应存储的元素值应该为 [1, n + 1] 之间,其中还包含一个缺失的元素。
// 我们可以遍历一遍数组,将当前元素放到其对应位置上(比如元素值为 1 的元素放到数组第 0 个位置上、元素值为 2 的元素放到数组第 1 个位置上,等等)。
// 然后再次遍历一遍数组。遇到第一个元素值不等于下标 + 1 的元素,就是答案要求的缺失的第一个正数。
// 如果遍历完没有在数组中找到缺失的第一个正数,则缺失的第一个正数是 n + 1。
// 最后返回我们找到的缺失的第一个正数。
public int firstMissingPositive(int[] nums) {
int n = nums.length;
// 第一步:清理数组,将无效值(负数和大于数组长度的值)替换为一个无效值(如 n + 1)
for (int i = 0; i < n; i++) {
if (nums[i] <= 0 || nums[i] > n) {
nums[i] = n + 1; // 用比数组长度大的值替换
}
}
// 第二步:使用索引标记值的存在情况
for (int i = 0; i < n; i++) {
int num = Math.abs(nums[i]);
// 只处理有效的值(1 到 n)
if (num <= n) {
// 将对应的索引位置的值标记为负数,表示该值存在于数组中
nums[num - 1] = -Math.abs(nums[num - 1]);
}
}
// 第三步:查找第一个缺失的正整数
for (int i = 0; i < n; i++) {
// 如果索引位置的值是正数,则该位置对应的正整数缺失
if (nums[i] > 0) {
return i + 1; // 返回缺失的正整数
}
}
// 如果所有位置的值都被标记为负数,则说明数组中包含了所有从 1 到 n 的整数
// 因此缺失的正整数是 n + 1
return n + 1;
}
}
最长连续序列
暴力做法有两种思路。
- 第 1 种思路是先排序再依次判断,这种做法时间复杂度最少是 O(nlog2n)O(nlog2n)。
- 第 2 种思路是枚举数组中的每个数
num,考虑以其为起点,不断尝试匹配num + 1、num + 2、...是否存在,最长匹配次数为len(nums)。这样下来时间复杂度为 O(n2)O(n2)。
我们可以使用哈希表优化这个过程。
思路:哈希表
- 先将数组存储到集合中进行去重,然后使用
curr_streak维护当前连续序列长度,使用ans维护最长连续序列长度。 - 遍历集合中的元素,对每个元素进行判断,如果该元素不是序列的开始(即
num - 1在集合中),则跳过。 - 如果
num - 1不在集合中,说明num是序列的开始,判断num + 1、nums + 2、...是否在哈希表中,并不断更新当前连续序列长度curr_streak。并在遍历结束之后更新最长序列的长度。 - 最后输出最长序列长度。
class Solution {
// public int longestConsecutive(int[] nums) {
Set<Integer> numSet = new HashSet<Integer>();
for(int num : nums ){
numSet.add(num);
}
int result = 0; // 最终序列长度
for(int num : numSet){
// 如果集合中不存在上一个数,那么就是序列开头
if(!numSet.contains(num-1)){
int curr = 1;// 当前序列长度
int currNum = num; // 当前数字
while(numSet.contains(currNum+1)){
curr+=1;
currNum+=1;
}
result = Math.max(result , curr);
}
}
return result;
}
}
只出现一次的数字
class Solution {
// 使用哈希表存储每个数字和该数字出现的次数。遍历数组即可得到每个数字出现的次数,并更新哈希表,最后遍历哈希表,得到只出现一次的数字。
// 但是使用位运算才能做到线性时间复杂度和常数空间复杂度
// 任何数和 0 做异或运算,结果仍然是原来的数,即 a⊕0=a
// 任何数和其自身做异或运算,结果是 0,即 a⊕a=0
// 记住:数组中的全部元素的异或运算结果即为数组中只出现一次的数字。
public int singleNumber(int[] nums) {
int single = 0;
for (int num : nums) {
single ^= num; // 相当于 single = single ^ num
}
return single;
}
}
2765

被折叠的 条评论
为什么被折叠?



