QR分解

本文介绍了QR分解法的基本概念及其在解决线性最小二乘法问题中的应用,并详细讲解了使用Householder变换进行QR分解的具体步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简介

QR分解法是三种将矩阵分解的方式之一。这种方式,把矩阵分解成一个正交矩阵与一个上三角矩阵的积。QR 分解经常用来解线性最小二乘法问题。QR 分解也是特定特征值算法即QR算法的基础。同时,QR分解后的矩阵与原矩阵的条件数保持一致。

QR分解的实际计算有很多方法,例如Givens旋转、Householder变换,以及Gram-Schmidt正交化等等。每一种方法都有其优点和不足。
详解
QR分解

二、实现

通过Householder变换实现QR分解。

# -*- coding: utf-8 -*-
"""
Created on Thu Dec 15 13:46:30 2016

    QR分解

@author: Administrator
"""

from numpy import *
from numpy.linalg import norm

def householder(x,y):
    m = x.shape[0]
    n = y.shape[0]
    if m != n:
        return
    y = sign(x[0]) * norm(x) * y / norm(y)
    u = x - y
    I = eye(n,dtype=float)
    H = I - 2 * outer(u,u) / inner(u,u)
    return H

def qr(A):
    m,n = A.shape
    R = A.copy()
    Q = zeros((n,n),dtype=float)
    for i in range(0,n):
        Q[i,i] = 1
    for i in range(0,n-1):
        x = R[i:n,i].getA1()
        y = zeros(n-i,dtype=float)
        y[0] = 1
        temp_H = householder(x,y)
        H = eye(n,n,dtype=float)
        H[i:n,i:n] = temp_H[0:n-i,0:n-i]
        Q = dot(Q,H)
        R = dot(H,R)  
    return Q,R

if __name__ == '__main__':
    A = array([[1,2,3,4,0],[-1,3,sqrt(2),3,0],[-2,2,e,pi,0],[-sqrt(10),2,-3,7,0],[0,2,7,5/2,0]],dtype=float)
    A = matrix(A,dtype=float)
    Q,R = qr(A)
    print R
### QR分解的概念与实现方法 QR分解是一种将矩阵分解为正交矩阵和上三角矩阵乘积的形式。具体而言,任意一个实数方阵 \( A \) 可以被分解为 \( A = QR \),其中 \( Q \) 是一个正交矩阵(满足 \( Q^TQ = I \)),\( R \) 是一个上三角矩阵[^2]。 #### QR分解的数学定义 对于一个 \( m \times n \) 的矩阵 \( A \),QR分解的目标是找到两个矩阵 \( Q \) 和 \( R \),使得: \[ A = QR \] - \( Q \) 是一个 \( m \times n \) 的矩阵,其向量是标准正交的。 - \( R \) 是一个 \( n \times n \) 的上三角矩阵。 #### QR分解的实现方法 QR分解可以通过多种算法实现,常见的包括 Gram-Schmidt 正交化、Householder 变换和 Givens 旋转等方法[^2]。 1. **Gram-Schmidt 正交化** Gram-Schmidt 方法通过逐步构造正交基来实现 QR 分解。假设矩阵 \( A \) 的向量为 \( a_1, a_2, \dots, a_n \),则可以按照以下步骤进行: - 初始化 \( q_1 = \frac{a_1}{\|a_1\|} \)。 - 对于每个后续向量 \( a_k \),从 \( a_k \) 中减去它在之前所有正交向量上的投影,得到新的正交向量 \( b_k \),然后将其标准化为 \( q_k = \frac{b_k}{\|b_k\|} \)。 - 构造矩阵 \( Q \) 的向量为 \( q_1, q_2, \dots, q_n \),并计算 \( R \) 为 \( R = Q^T A \)。 下面是一个基于 Gram-Schmidt 正交化的 Python 实现示例: ```python import numpy as np def gram_schmidt_qr(A): m, n = A.shape Q = np.zeros((m, n)) R = np.zeros((n, n)) for j in range(n): v = A[:, j] for i in range(j): R[i, j] = np.dot(Q[:, i].T, A[:, j]) v = v - R[i, j] * Q[:, i] R[j, j] = np.linalg.norm(v) Q[:, j] = v / R[j, j] return Q, R # 示例矩阵 A = np.array([[12, 9, -4], [7, 4, 5], [6, -3, 21], [6, 15, 8]], dtype=float) Q, R = gram_schmidt_qr(A) print("Q:\n", Q) print("R:\n", R) ``` 2. **Householder 变换** Householder 方法通过构造一系反射矩阵来实现 QR 分解。这种方法通常比 Gram-Schmidt 更数值稳定。每次反射会将矩阵的一消去到只剩下一个非零元素,从而逐步形成上三角矩阵 \( R \)。 3. **Givens 旋转** Givens 方法通过构造一系平面旋转矩阵来实现 QR 分解。每次旋转会将矩阵的一个元素变为零,从而逐步形成上三角矩阵 \( R \)。 #### 数值稳定性与应用 在实际应用中,QR 分解常用于求解线性方程组、最小二乘问题以及特征值计算等问题。由于 Gram-Schmidt 方法可能存在数值不稳定性,因此在需要高精度的情况下,通常推荐使用 Householder 或 Givens 方法[^1]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值