机器学习资源大集合

机器学习热度增长,对机器学习从业者的指导和机器学习日常开发中的细节,在日常开发中需要解决实际问题时就拿过来翻一翻。在构建真实的机器学习系统时的参考。例如,假设你有一个JSON文件,其中包含1000个具有缺失值的分类特征和数值型特征,并且目标向量的分类不均衡,你想得到一个可解释的模型。提供的解决方案可以帮助解决如下问题:加载JSON文件;特征的标准化;对特征字典编码;填充缺失的分类值;使用主成分进行特征降维;使用随机搜索选择最佳模型;训练随机森林分类器;选择随机森林中的重要特征。

深度神经网络是(非常)简化的大脑皮层的模型,由一堆人工神经元层组成,在强大的计算能力和大量数据的帮助下,深度学习是可能的,而且还具有令人难以置信的成就,这是其他机器学习(ML)技术无法企及的,这种热情很快扩展到了机器学习的许多其他领域。Scikit-Learn非常易于使用,它有效地实现了许多机器学习算法,因此成为学习机器学习的重要切入点。TensorElow是用于分布式数值计算的更复杂的库。通过将计算分布在数百个GPU(图形处理单元)服务器上,它可以有效地训练和运行大型神经网络。Keras是高层深度学习API,使训练和运行神经网络变得非常简单。它可以在TensorElow、Theano或微软Cognitive Toolkit(以前称为CNTK)之上运行。TensorFlow附带了该API自己的实现,称为tf.keras,支持某些高级TensorFlow功能(例如有效加载数据的能力)。

《机器学习实战:基于Scikit-Learn、Keras和TensorFlow第2版》中文PDF+英文PDF+源代码

《机器学习实战:基于Scikit-Learn、Keras和TensorFlow第2版》中文PDF,1052页,有详细书签目录,文字可以复制;
《机器学习实战:基于Scikit-Learn、Keras和TensorFlow第2版》英文PDF,1096页,有详细书签目录,文字可以复制;配套源代码;奥雷利安著,宋能辉译

下载: https://pan.baidu.com/s/11qSa3bIrehR3h3gZRT2J3Q
提取码: 794q

现有的机器学习系统类型繁多,根据以下标准将它们进行大的分类:
·是否在人类监督下训练(有监督学习、无监督学习、半监督学习和强化学习)。
·是否可以动态地进行增量学习(在线学习和批量学习)。
·是简单地将新的数据点和已知的数据点进行匹配,还是像科学家那样,对训练数据进行模式检测然后建立一个预测模型(基于实例的学习和基于模型的学习)。
这些标准之间互相并不排斥,你可以以你喜欢的方式将其任意组合。例如,现在最先进的垃圾邮件过滤器可能是使用深度神经网络模型对垃圾邮件和常规邮件进行训练,完成动态学习。这使其成为一个在线的、基于模型的有监督学习系统。

我们要知道什么是机器学习,它试图解决什么问题,以及其系统的主要类别和基本概念,典型机器学习项目中的步骤,通过将数据与模型进行拟合来学习,·优化成本函数,处理、清洁和准备数据,选择和工程化特征,选择模型并使用交叉验证调整超参数,机器学习的挑战,特别是欠拟合和过拟合(偏差/方差的权衡),最常见的学习算法:线性和多项式回归、逻辑回归、k-近邻算法、支持向量机、决策树、随机森林和集成方法,降低训练数据的维度,
其他无监督学习技术,包括聚类、密度估计和异常检测。什么是神经网络以及它们的作用,使用TensorElow和Keras构建和训练神经网络,最重要的神经网络架构,包括用于表格数据的前馈神经网络、用于计算机视觉的卷积网络、用于序列处理的递归网络和长短期记忆(LSTM)网络、用于自然语言处理的编码器/解码器和Transformer、自动编码器和用于生成学习的生成式对抗网络(GAN),训练深度神经网络的技术,如何使用强化学习构建可以通过反复试错学习好的策略的代理程序(例如游戏中的机器人),有效地加载和预处理大量数据,大规模训练和部署TensorElow模型。

胡欢武《机器学习基础从入门到求职》PDF

《机器学习基础从入门到求职》PDF,385页,有书签目录,文字可以复制,胡欢武著。

下载: https://pan.baidu.com/s/1bGd-9DqL4OZEk1e2yKGeuQ
提取码: mzs4

机器学习算法相关的岗位待遇比一般的开发岗位要好一些,但要求也变得更多。从目前的行情来看,站在公司招聘的角度,是一个既要、又要、还要的过程,即:既要掌握比较扎实的机器学习理论基础,又要有实践经验、懂业务场景,还要能编码、会计算机算法题。

理论基础就是我们一直所说的机器学习算法理论,业务能力是指相关的项目或者工作经验,工程实践能力就是动手写代码的能力。对于一个想求职机器学习相关岗位的应届生,或者是想将机器学习应用到自己专业领域的人士,再或者是一个有一定编程经验想要转算法岗位的人来说,机器学习理论可能都是第一拦路虎。本书希望可以帮助读者用最短的时间、最少的精力,攻克这最难的一关。

《Python机器学习手册从数据预处理到深度学习》采用基于任务的方式来介绍如何在机器学习中使用Python。有近200个独立的解决 方案,针对的都是数据科学家或机器学习工程师在构建模型时可能遇到的常见任务,涵盖从简 单的矩阵和向量运算到特征工程以及神经网络的构建。作为参考,在机器学习的日常开发中遇到问题时,随时借鉴代码,快速解决问题。

《Python机器学习手册从数据预处理到深度学习》中文PDF+英文PDF+mobi+epub
《Python机器学习手册从数据预处理到深度学习》中文PDF,557页,有书签目录,文字可以复制,[美]克里斯阿尔本Chris Albon著;英文PDF,366页,文字可以复制。

下载: https://pan.baidu.com/s/1pS4FiALR6xR4CNQbawxXow
提取码: pqs5

一个模型只有当其预测结果准确时才有实用价值,所以训练模型的目的并不仅仅是创建一个模型(这很简单),更要创建一个准确的模型(这很难)。因此,在开始学习各种模型算法之前,需要先了解如何评估生成的模型。

评估有监督学习模型的方法非常直观:首先训练一个模型,然后计算一些性能指标(准确率、均方误差等)来评估它的预测效果。然而这种方法从根本上说是有缺陷的。如果使用同一份数据来训练和评估模型,那么得到的结果可能并不是我们想要的。评估模型的目的并不是要评估其在训练集数据上的表现,而是要评估它在从未见过的数据上(如新客户、新犯罪、新图像)的表现。因此,评估方法应该帮助我们评估模型在新数据上做预测时的准确性。

用通俗的语言讲解涵盖算法模型的机器学习,主要内容包括机器学习通用概念、三个基本科学计算工具、有监督学习、聚类模型、降维模型、隐马尔可夫模型、贝叶斯网络、自然语言处理、深度学习、强化学习、模型迁移等。在深入浅出地解析模型与算法之后,介绍使用Python相关工具进行开发的方法、解析经典案例,能理解、能设计、能编码、能调试,没有基础的在学习后也能够上手设计与开发机器学习产品。

推荐学习《从机器学习到深度学习:基于scikit-learn与TensorFlow的高效开发实战》,场景式机器学习实践,理论方面从人工智能与机器学习的基本要素讲起,逐步展开有监督学习、无监督学习、强化学习这三大类模型的应用场景与算法原理;实践方面通过金融预测、医疗诊断概率模型、月球登陆器、图像识别、写诗机器人、中国象棋博弈等案例,将机器学习应用在各行各业里,其中后三个案例使用了深度学习技术。

《从机器学习到深度学习:基于scikit-learn与TensorFlow的高效开发实战》PDF,369页,有目录,文字可复制;配有源代码。

下载: https://pan.baidu.com/s/1LS77COnA2ZexybiuMH7xMA
提取码: st6n

感觉深度学习中应用RNN实现一个写诗机器人,挺有意思,基于LSTM讲解开发步骤:网络架构、数据加载、搭建TensorFlow Graph 、解析LSTM RNN 、LSTM中的参数、用sequence_loss计算RNN损失值、学习速度可调优化器、训练、 写唐诗、用唐诗语料训练语言模型、作诗,实战性很强。

机器学习是近年来渐趋热门的一个领域,同时Python 语言经过一段时间的发展也已逐渐成为主流的编程语言之一。《Python机器学习实践指南》结合了机器学习和Python 语言两个热门的领域,通过利用两种核心的机器学习算法来将Python 语言在数据分析方面的优势发挥到极致。

《Python机器学习实践指南》中文PDF,268页,带目录,彩色配图,文字可复制;英文PDF,324页,带目录,彩色配图,文字可复制;配有源代码。

下载: https://pan.baidu.com/s/183L7EG0JPf0ky8B8hx1PUA
提取码: ds6i

共有10 章。第1 章讲解了Python 机器学习的生态系统,剩余9 章介绍了众多与机器学习相关的算法,包括各类分类算法、数据可视化技术、推荐引擎等,主要包括机器学习在公寓、机票、IPO 市场、新闻源、内容推广、股票市场、图像、聊天机器人和推荐引擎等方面的应用。

神经网络是计算智能和机器学习的重要分支,在诸多领域都取得了很大的成功。《神经网络与机器学习》结合近年来神经网络和机器学习的最新进展,从理论和实际应用出发,全面、系统地介绍了神经网络的基本模型、方法和技术,并将神经网络和机器学习有机地结合在一起。注重对数学分析方法和理论的探讨,也非常关注神经网络在模式识别、信号处理以及控制系统等实际工程问题的应用。举重若轻地对神经网络的基本模型和主要学习理论进行了深入探讨和分析,通过大量的试验报告、例题和习题来帮助更好地学习神经网络。

《神经网络与机器学习(第3版)》中文PDF,598页,带目录;英文PDF,937页,带目录。

下载: https://pan.baidu.com/s/1s3M9o5kV-sckvOOHcQ_HCg
提取码: qe6r

机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度等多门学科,专门研究计算机怎样模拟或实现人类的学习行为。机器学习是人工智能的核心,是使计算机具有智能的根本途径。通过对机器学习的背景知识、算法流程、相关工具、实践案例以及知识图谱等内容的讲解,全面介绍了机器学习的理论基础和实践应用。涉及机器学习领域的多个典型算法,并详细给出了机器学习的算法流程。不仅可以了解机器学习的理论基础,也可以参照一些典型的应用案例拓展自己的专业技能。

《机器学习实践应用》高清PDF,279页,带目录和书签,彩色配图;配套源代码。
下载: https://pan.baidu.com/s/1sdvcQHO5f20E6wGX4aNl_A
提取码: 2258

《图解机器学习》用丰富的图示,从最小二乘法出发,对基于最小二乘法实现的各种机器学习算法进行了详细的介绍。介绍了机器学习领域的概况;介绍了各种有监督的回归算法和分类算法;介绍了各种无监督学习算法;分介绍了机器学习领域中的新兴算法。大部分算法都有相应的MATLAB程序源代码,可以用来进行简单的测试。

《白话大数据与机器学习》PDF,345页,带目录和书签.

《图解机器学习》PDF,242页,带目录和书签.

下载: https://pan.baidu.com/s/1tWv89Hi2z1ICX33zIeOsrA
提取码: hd5s

《机器学习基础教程》中文PDF,202页,带目录和书签;英文PDF,428页。

下载: https://pan.baidu.com/s/1LnxmItiXnBX8dlF6G-3pEQ
提取码: g26c

《机器学习基础教程》包含了数学和统计学的核心技术,用于帮助理解一些常用的机器学习算法。展示的算法涵盖了机器学习的各个重要领域:分类、聚类和投影。对一小部分算法进行了详细描述和推导,而不是简单地将大量算法罗列出来。通过大量的MATLAB/Octave脚本将算法和概念由抽象的等式转化为解决实际问题的工具,利用它们可以重新绘制书中的插图,并研究如何改变模型说明和参数取值。

《神经网络设计第2版》中文PDF+英文PDF+代码

《神经网络设计第2版》中文PDF,438页,有详细书签目录,文字可以复制;英文PDF,1012页;配套源代码,马丁T. 哈根著;章毅等译.
下载: https://pan.baidu.com/s/1TNQy6TRiiDoZWgPlHV5N_A
提取码: 83hp

《神经网络设计书第2版》主要讨论网络结构、学习规则、训练技巧和工程应用,紧紧围绕“设计”这一视角组织材料和展开讲解,强调基本原理和训练方法,概念清晰,数学论述严谨,包含丰富的实例和练习,并配有课件和MATLAB演示程序。

内容简介明了,直奔主题。每章都有上章回顾,也有这章总结,十分利于初次学习和看完后总结。保留了适量的数学推导,对人的理解恰到好处。数学推导学要用到微积分和线性代数,没有其他的额外知识,例子很好,并且结合了MATLAB。每一个知识点都会举一个例子,并且会详细认真的推导,对知识点的理解有极大的帮助。是MATLAB神经网络工具箱的作者,因此结合了MATLAB编程,方便学生上手实验。

刘忠雨《深入浅出图神经网络GNN原理解析》PDF+源代码

《深入浅出图神经网络GNN原理解析》PDF,285页,有详细书签目录,文字可以复制;配套源代码,刘忠雨等著

下载: https://pan.baidu.com/s/1lVYEIwR4sCE6Zhp_k5w25g
提取码: kjra

激活函数是神经网络中一个十分重要的概念,它的非线性使得神经网络几乎可以任意逼近任何非线性函数。如果不使用激活函数,无论神经网络有多少层,其每一层的输出都是上一层输入的线性组合,这样构成的神经网络仍然是一个线性模型,表达能力有限。激活函数的选择可以多种多样,一个基本的要求是它们是连续可导的,可以允许在少数点上不可导。常用的激活函数包括S型激活函数和ReLU及其变种等。

图神经网络技术的出现有其必然性和重要性。在深度神经网络技术兴起的前几年,图像、语义、文本等形式的数据都能在深度学习中被很好地应用,并获得了十分好的效果。这促使大量的相关应用进入了实用阶段,如人脸识别、语助手、机器翻译等。尽管如此,深度学习一直无法很好地对另一类形式的数据—图数据(或称网络数据)进行有效地适配。作为一类主要用来描述关系的通用数据表示方法,图数据在产业界有着更加广泛的应用场景,在诸如社交网络、电子购物、物联网、生物制药等场景中,都可以找到图数据的影子。将深度学习技术的成功经验迁移到图数据的学习中来,是一种十分自然且必要的需求。

《深度学习推荐系统》PDF+王喆
《深度学习推荐系统》PDF,带目录,304页,文字可复制,王喆编著
下载: https://pan.baidu.com/s/1aUbP6Ukun0_yCYDwEjIrbw
提取码: jvjd

深度学习推荐系统从深度学习推荐模型、Embedding技术、推荐系统工程实现、模型评估体系、业界前沿实践等几个方面介绍了这场技术革命中的主流技术要点。

与传统机器学习不同的是,深度学习将复杂的、需要专业化建模与优化能力、专业化分布式计算编程能力才能搞定的工业级机器学习算法研发闭环打破,提供了如下搭积木式的算法研发新范式:
( 1 )大量优秀且开源的深度学习训练框架提供了封装好的基础模块,新模型算法的设计变成了工具化组装。
( 2 )深度模型的优化可以采用一系列标准的优化器轻松完成,无须人工进行梯度的求导及优化算法的设计,且大部分优化器已经嵌入在深度学习框架中,元须编程开发。
( 3 )算法工程师或科学家可以将主要研发精力集中到对领域问题的理解和模型设计,通过类似土木工程师绘图的方式搭建深度模型架构图,接下来的工作交给软件工程师,通过对深度学习框架计算效率和性能的优化,即可完成模型的训练。换句话说,模型的设计和实现是解耦的。

《线性代数及其应用第5版》中文PDF+习题解答手册+英文PDF
《线性代数及其应用第5版》中文PDF,567页,带详细目录,文字可复制,David C Lay著,刘深泉译;配套第5版习题解答手册,454页;第5版英文PDF,713页。
下载: https://pan.baidu.com/s/1PlzFkJtQLvru29o51g3VBQ
提取码: 3ky7

给出新的线性代数基本介绍和一些有趣应用,目的是帮助掌握线性代数的基本概念及应用技巧,为后续课程的学习和工作实践奠定基础。主要内容包括线性方程组、矩阵代数、行列式、向量空间、特征值与特征向量、正交性和小二乘法、对称矩阵和二次型、向量空间的几何学等,包含大量的练习题、习题、例题等,便于参考。给我的感受是内容既有深度,又有广度,讲得清晰易懂,又能联系实际应用,很好的入门和复习书,图片形象展示了数学工具也有物理意义,数形结合妙哉,而且还与计算机巧妙的结合起来。一本让我觉得“哇,数学这么神奇”的书,粗浅地过了一遍,很适合入门,很适合工科。

线性代数是一种语言,必须用学习外语的方法每天学习这种语言,理解每一节的内容并不容易,讲得清晰易懂,又能联系实际应用,有大量的应用实例,内容结构安排的很好,前几章就引入子空间,向量,线性变换的概念,还介绍了一下线性代数的核心思想和研究内容。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值