# Max Sum（最大子序列和）（经典dp）

Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.

Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).

Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.

Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5

Sample Output
Case 1: 14 1 4 Case 2: 7 1 6

#include<stdio.h>
int main()
{
int n,m,i,j,end,begin,temp,max;
int e,f,k,flag=1;
int a[100005];
scanf("%d",&n);
k=1;
while(n--)
{
begin=end=0;

scanf("%d",&m);
for(i=1;i<=m;i++)
{
scanf("%d",&a[i]);
}
temp=0;
max=-999999;
begin=e=1;
f=1;

for(i=1;i<=m;i++)
{
temp+=a[i];

if(temp>max)
{
e=begin;
f=i;
max=temp;
}

if(temp<0)
{
begin=i+1;
temp=0;
}

}
printf("Case %d:\n",k++);
printf("%d %d %d\n",max,e,f);
if(n!=0)
printf("\n");
}
return 0;
}