spark函数讲解:cogroup

cogroup:将多个RDD中同一个Key对应的Value组合到一起。最多可以组合四个RDD

函数原型:

def cogroup[W1, W2, W3](other1: RDD[(K, W1)], 
      other2: RDD[(K, W2)], other3: RDD[(K, W3)], partitioner: Partitioner) :
      RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2], Iterable[W3]))] 
def cogroup[W1, W2, W3](other1: RDD[(K, W1)], 
      other2: RDD[(K, W2)], other3: RDD[(K, W3)], numPartitions: Int) :
      RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2], Iterable[W3]))]
def cogroup[W1, W2, W3](other1: RDD[(K, W1)], 
      other2: RDD[(K, W2)], other3: RDD[(K, W3)])
      : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2], Iterable[W3]))]
def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)],
       partitioner: Partitioner)
      : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))]
def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)], 
      numPartitions: Int)
      : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))]
def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)])
      : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))]
def cogroup[W](other: RDD[(K, W)], partitioner: Partitioner) :
      RDD[(K, (Iterable[V], Iterable[W]))]
def cogroup[W](other: RDD[(K, W)], numPartitions: Int): RDD[(K, (Iterable[V], Iterable[W]))]
def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))]

实例:

/**
 * User: 过往记忆
 * Date: 15-03-10
 * Time: 下午06:30
 * bolg: http://www.iteblog.com
 * 本文地址:http://www.iteblog.com/archives/1280
 * 过往记忆博客,专注于hadoop、hive、spark、shark、flume的技术博客,大量的干货
 * 过往记忆博客微信公共帐号:iteblog_hadoop
 */
scala> val data1 = sc.parallelize(List((1, "www"), (2, "bbs")))
data1: org.apache.spark.rdd.RDD[(Int, String)] =
      ParallelCollectionRDD[32] at parallelize at <console>:12
 
scala> val data2 = sc.parallelize(List((1, "iteblog"), (2, "iteblog"), (3, "very")))
data2: org.apache.spark.rdd.RDD[(Int, String)] =
      ParallelCollectionRDD[33] at parallelize at <console>:12
 
scala> val data3 = sc.parallelize(List((1, "com"), (2, "com"), (3, "good")))
data3: org.apache.spark.rdd.RDD[(Int, String)] =
      ParallelCollectionRDD[34] at parallelize at <console>:12
 
scala> val result = data1.cogroup(data2, data3)
result: org.apache.spark.rdd.RDD[(Int, (Iterable[String], 
      Iterable[String], Iterable[String]))] = MappedValuesRDD[38] at cogroup at <console>:18
 
scala> result.collect
res30: Array[(Int, (Iterable[String], Iterable[String], Iterable[String]))] =
Array((1,(CompactBuffer(www),CompactBuffer(iteblog),CompactBuffer(com))), 
(2,(CompactBuffer(bbs),CompactBuffer(iteblog),CompactBuffer(com))), 
(3,(CompactBuffer(),CompactBuffer(very),CompactBuffer(good))))


从上面的结果可以看到,data1中不存在Key为3的元素(自然就不存在Value了),在组合的过程中将data1对应的位置设置为CompactBuffer()了,而不是去掉了。


本文转载自:http://www.iteblog.com/archives/1280


发布了90 篇原创文章 · 获赞 141 · 访问量 204万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览